Примем работу за 1. Пусть производительность первого экскаватора (объём выполненной работы за 1 час) равна х, а второго экскаватора - у. Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1: 48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75: 40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки): { 48(х+у)=1 { 40х+30у=0,75
{х+у=1/48 {40х+30у=0,75
{х=1/48-у {40х+30у=0,75
Подставим значение х во второе уравнение: 40(1/48-у)+30у=0,75 40/48-40у+30у=0,75 5/6-10у=0,75 -10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12 -10у=-1/12 10у=1/12 у=1/12÷10=1/120 - производительность второго экскаватора. Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов. ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение: х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80 1÷1/80=80 (часов)
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1:
48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75:
40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки):
{ 48(х+у)=1
{ 40х+30у=0,75
{х+у=1/48
{40х+30у=0,75
{х=1/48-у
{40х+30у=0,75
Подставим значение х во второе уравнение:
40(1/48-у)+30у=0,75
40/48-40у+30у=0,75
5/6-10у=0,75
-10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12
-10у=-1/12
10у=1/12
у=1/12÷10=1/120 - производительность второго экскаватора.
Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов.
ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение:
х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80
1÷1/80=80 (часов)