М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
m1kaS7ark
m1kaS7ark
20.03.2022 18:07 •  Алгебра

Найдите корень уравнений log 1/7 (x+7)=-2

👇
Ответ:
vlad2044
vlad2044
20.03.2022

(1/7)^-2=x+7 (основное свойство логарифма)

7^2=x+7

49=x+7

x=42

 

 

 

 

 

 

 

 

4,4(93 оценок)
Открыть все ответы
Ответ:
ксззххххх
ксззххххх
20.03.2022

12 5   5  

5  16  5 =12*16*15+5*5*5+5*5*5-(5*16*5+5*5*15+5*5*12)=  

5  5   15  

=2880+125+125-(400+375+300)=2055  

Громоздкие вычисления заменим упрощением методом разложения по элементам какой - либо строки,например, первой, перейдя к определителям второго порядка. Получим  

(-1)²*12( 16*15-25)+(-1)³*5*(5*15-25)+(-1)⁴*5(25-5*16)=12*215-5*(50)+5*(-55)=2580-250-275=2055  

Выделим несколько методов нахождения определителей третьего  порядка.  

Метод треугольника    

а  b  c    

d m  n    

r  t    s    

Δ=аms+bnr+dtc-(cmr+bds+tna), громоздкий при наличии больших чисел, хотя его можно свести путем упрощения на более компактный, в смысле легче просчитываемый с метода разложения по элементам строки или столбца, для этого нужно помнить, что важную роль играют знаки, при разложении надо умножать алгебраич. дополнения на элементы строки или столбца, на который раскладываем определитель. Алгебраическое дополнение - этом минор с учетом знака. знак учитывают так : умножают минор на (-1)ˣ⁺ⁿ, х и n- это номер строки и столбца, на пересечении которых находится данный элемент. А минор - это определитель на порядок ниже, т .к. вы вычеркиваете нужную строку и столбец. Можно еще считать методом Саррюса, т.е. приписывая справа два столбца, первый и второй, но это повтор метода треугольника, чтобы не запутаться с параллельными  диагоналям элементами. Приведение к треугольному виду полезно, т.к. облегчает счет.  

Итак, я выбираю метод разложения по элементам строки или столбца. А если вы еще и знакомы с элементами математического  программирования, то это неплохая тренировка для решения СЛАУ  методом Гаусса или Жордана - Гаусса. Не метод - песня, т.к. там идет двойная проверка результатов. Это если вкратце. )

4,4(78 оценок)
Ответ:

4 корня

Объяснение:

2sin(3x)*sin(x) + cos(2x) + 2 = 0; x € [-Π/2; 3Π/2]

Формулы:

sin(3x) = 3sin(x) - 4sin^3(x)

cos(2x) = 1 - 2sin^2(x)

Подставляем формулы в уравнение:

2sin(x)*(3sin(x) - 4sin^3(x)) + 1 - 2sin^2(x) + 2 = 0

6sin^2(x) - 8sin^4(x) - 2sin^2(x) + 3 = 0

8sin^4(x) - 4sin^2(x) - 3 = 0

Получили биквадратное уравнение относительно sin(x).

Сделаем замену sin^2(x) = y ≥ 0 при любом х.

8y^2 - 4y - 3 = 0

D/4 = 2^2 - 8*(-3) = 4 + 24 = 28 = (2√7)^2

y1 = (2 - 2√7)/8 < 0 - не подходит.

y2 = (2 + 2√7)/8 = (1 + √7)/4

Возвращаемся к переменной х

sin^2(x) = (1+√7)/4

1) sin x = -√((1+√7)/4)

x1 = -arcsin [√((1+√7)/4)] + 2Πn, n € Z

x2 = π + arcsin[√((1+√7)/4)] + 2Πn, n € Z

2) sin x = √((1+√7)/4)

x3 = arcsin[√((1+√7)/4)] + 2Πk, k € Z

x4 = π - arcsin[√((1+√7)/4)] + 2Πk, k € Z

Теперь нам надо найти количество корней на промежутке [-Π/2; 3Π/2]

Найдем, в какую четверть попадает каждый из корней. Обозначим:

t = √((1+√7)/4) ≈ 0,95

Можно и не вычислять, самое главное, что t € (0; 1)

arcsin(0,95) ≈ 72° = 2Π/5

Тоже можно не вычислять, главное, что arcsin t € (0, Π/2)

x1 = -arcsin t € (-Π/2; 0)

x2 = Π + arcsin t € (Π; 3Π/2)

x3 = arcsin t € (0; Π/2)

x4 = Π - arcsin t € (Π/2; Π)

Как видим, все 4 корня попадают во все 4 четверти, то есть в промежуток.

4,6(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ