(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)
Советую проверить решение! могут быть мелкие ошибки.
Решение: Для начала ищем производную функции: y'=3x^2+12x+9 Затем приравниваем производную к нулю: 3x^2+12x+9=0 Ищем дискриминант: Д=36 Ищем корни квадратного уравнения: x1=-1; x2=-3 Находим значения функции на концах промежутка (если промежуток с квадратными скобками) и в критических точках производной т.е. в корнях квадратного уравнения: y(-2)=-8+24-18+8=6 y(-1)= -1+6-9+8=4 y(0)=8 y(-3) не принадлежит заданному промежутку Выбираем наименьшее значение. Если у вас скобки в задании всё таки круглые, то ответ будет 4, а если скобки квадратные, то наименьшим всё равно остается 4.
Понятия "область вызначения" в математическом анализе не существует.
Если речь идет об области значений данной функции, то это вся числовая прямая (область определения функции f(x) = cosx).
Если речь идет об области определения данной функции, то нужно уточнить ее аргумент.
При х+2 (вместо написанного вами знака =) -3< (или = ) x < (или =) -1
При х-2 она составляет промежуток 3< (или = ) x < (или =) 1
пишите задания точнее и будьте внимательны!)