q^(n-1)=256 (1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1) Вероятно, все ж , q -целое, тогда либо q=2 n=9 либо 4 n=5 либо 16 n=3 256 n=2 Легко видеть, что годится только q=4 n=5 ответ: q=4 n=5 б) 243* (3^(-n)+1)=182*(1/3+1) 243*(1-(-3)^(-n))=182*4/3 729 -3^6*(-3)^(-n)==728 (3^6)*(-3)^(-n)=1 ответ: n=6 an=243*(-1/(3^5))=-1
Пусть весь путь - S. Скорость гркзовика - v(г). Скорость легкового автомобиля - v(a). Время затраченное грузовиком и легковым автомобилем на весь путь t(г) и t(a) соответственно. По условию t(a)=t(г)-1.
Найдём скорость автомобился и грузовика из формулы v=S/t: v(a)=S/t(a)=S/(t(г)-1) v(г)=S/t(г).
По условию сказано, что при движении навстречу друг другу они затратили 1 час и 12 минут, т.е. t(3)=1,2 ч. Так как они двигались на встречу друг к другу, то общая скорость v(o)=v(a)+v(г). Тогда весь путь равен S=v(o)t(3). Подставляем значение общей скорости: S=(v(a)+v(г))t(3) Подставляем значения скоростей, которые нашли ранее: S=(S/(t(г)-1) + S/t(г))×t(3) Выносим S за скобки и сокращаем: 1=(1/(t(г)-1) + 1/t(г))×t(3) Приводим всё к общему знаменателю внутри скобок и получаем уравнение: t(г)^2-3.4t(г)+1.2=0 Решая уравнение находим время которон затратил грузовик на весь путь t(г)=3ч. (Корень 0.4 не подойдет, т.к. тогда получится, что время автомобилч на дорогу отрицательно) Ну а время автомобиля на дорогу t(a)=3-1=2
a) y = 2,5 * (-1) = -2,5
б) y = -5, если x будет равен -2. Составим формулу: y = 2,5 * (-2) = -5