М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maistrenko1
maistrenko1
10.02.2020 14:31 •  Алгебра

решите уравнение (х-5) ^2=81. если уравнение имеет более одного корня, в ответ запишите произведения корней.

👇
Ответ:
shulyakovatati
shulyakovatati
10.02.2020

решение на фотографии


решите уравнение (х-5) ^2=81. если уравнение имеет более одного корня, в ответ запишите произведения
4,4(37 оценок)
Ответ:
kuralova200
kuralova200
10.02.2020

x=-56

Объяснение:

(x-5)^2=81\\\\

x-5=9\;\;\;\;\;\;\;\;\;x-5=-9\\x=14\;\;\;\;\;\;\;\;\;\;\;\;\;\;x=-4    

x=14*(-4) = -56

4,7(45 оценок)
Открыть все ответы
Ответ:
Heh6
Heh6
10.02.2020

Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения \sin(t) = \alpha.

Если нарисовать числовую окружность, то значение \sin(t) = \alpha есть координата точки t по оси oy, ведь для любой точки числовой окружности справедливо, что t(x; \: y), \: x = \cos(t), \: y = \sin(t), т.е. точка t \in \mathbb R имеет координаты (\cos(t); \: \sin(t)).  

Если провести прямую, параллельную оси ox через точку \sin(t), то она пересечётся с числовой окружностью в каких-то точках.  

Чтобы было понятнее, советую нарисовать окружность радиусом R = 1 и центром в точке O(0;0) и отмечать всё, о чём я пишу.  

Теперь рассмотрим эти точки пересечения.

Если 0, то пересечения будут в первой и второй четвертях.

Если -1, то пересечения будут в третьей и четвёртой четвертях.

Если \sin(t) = 0, то пересечений тоже два и это 0 и \pi.

Если \sin(t) = 1, то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она \frac{\pi}{2}.

Если же \sin(t) = -1, то пересечение тоже одно, тоже является точкой касания, но значение равно -\frac{\pi}{2}.

А теперь вспомним определение арксинуса. Арксинусом числа \alpha называют такой угол t \in \lbrack 0; \: \frac{\pi}{2}\rbrack, что \sin(t) = \alpha. Главное здесь то, что t может быть углом только первой четверти.  

Отсюда же следует, что t=\arcsin(\alpha),\: t \in \lbrack 0; \: \frac{\pi}{2}\rbrack.

Это прекрасно работает для \sin(t) = 1, ведь \arcsin(1) = \frac{\pi}{2}.

Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. \sin(t) - это число, а \arcsin(\alpha) - угол.  

Пусть прямая y= \alpha пересекается с окружностью в точках A в первой четверти и B во второй четверти, а точку \alpha на оси oy мы обзовём C. Рассмотрим треугольники AOC и BOC, в них:

OC - отрезок, лежащий на оси oy, а AB - хорда, параллельная оси ox, значит OC \perp AB, по аксиоме о перпендикулярности прямых. Следовательно, треугольники AOC и BOC - прямоугольные по определению.OC - отрезок, лежащий на радиусе и OC \perp AB, значит AO = OB по свойству радиуса.OC - общая сторона.

Треугольники AOC и BOC равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол COA и угол BOC.

Но углы мы отсчитываем от точки (0; \: 1), обзовём её K. Тогда угол AOK = \frac{\pi}{2} - COA. А это угол t первой четверти.  

BOK = 2COA + t\\2COA + 2t =\pi\\BOK + t = \pi\\BOK = \pi - t = \pi - arcsin(\alpha)

А угол BOK - искомый угол второй четверти.

Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть \gamma - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный \gamma + 2\pi. Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами (\cos(t);\: \sin(t)) надо добавить 2\pi n, где n - целое (чтобы получились полные обороты).

Вот так и получается первая формула.

Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности n. Если n - чётное, то формула трансформируется в \arcsin(\alpha) + 2\pi \times p, \: 2p = n, \: p \in \mathbb{Z}, если нечётное, то в -\arcsin(\alpha) + \pi \times (2p+1), \: (2p+1) = n, \: p \in \mathbb{Z}, ну а -\arcsin(\alpha) + \pi \times (2p+1) = \pi - \arcsin(\alpha) + 2\pi \times p. Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.

Как-то так. Фу-у-у-ух. Много. Очень Много Букв.

P.S. Прости за задержку.

4,6(58 оценок)
Ответ:
1/     an=n³-2   a1 = 1-2=-1       a2 =2³-2=6        a5=5³-2=123
2/     y1=3  y=1/y(n-1)   y2=1/3  y3=1/1/3=3   y4=1/3
3/      25  30   35... d=5   an=25+5(n-1)
4/    27, -9, 3    q=-9/27= -1/3  b8=27*(-1/3)⁷
5/     16.8,16.5, 16.2  a1=16.8  d=16.5-16.8 = -0.3
          16.8-0.3(n-1)<0   0.3n-0.3>16.8  0.3n>17.1  n>57  начиная с номера 58

6/    b2=1/16  b4=1    b1*q=1/16  b1*q³=1   b1q³/b1q=q²=16  
q=4   b1=1/q³   b1=1/64  b6=4⁵/4⁴=4   
 s6=(b6*q-b1)/(q-1)   s6=(4*4-1/64)/3=5 21/64
б7/  на 5 делятся  100, 105,  115, 120,125,130,135
a1=100  d=5   an=100+5(n-1)<1000   n-1<900/5=180  n<181  n=180
a180=100+5*179=995   s0=(100+995)*180/2=98550

на 7 ДЕЛЯТСЯ 105=7*15, 140=7*20,  175=7*25, 210=7*30...
105,140,175, 210 a1=105    d=35  
an=105+35(n-1)<1000   n-1<25.5    n=26  a26=105+35*25=980
(a1+an)n/2 =s=(105+980)*26/2=14105

искомая сумма  98550 -14105 =84445
4,5(1 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ