Вот Расположим обе наклонных в одной вертикальной плоскости, для удобства построения.Точку из которой проведены наклонные обозначим К. Опустим из К перпендикуляр на плоскость до пересечения в точке С. Для удобства примем КС параллельно оси Y. Из точки С проводим горизонталь АС. Угол АСК прямой. АС=4,5, ВС=1,5. Обозначим КАС=а, тогда из условия КВС=2а. По известной формуле tg2а=2tgа/(1-tgа квадрат). КС=АСtgа=4,5 tgа. Из второго треугольника КС=ВСtg2а=(1,5 на 2tgа)/(1-tgа квадрат). Отсюда tgа=0,578. Угол а=30. Тогда искомые длины наклонных АК=АС/cosа=5,2 ВК=ВС/cos2а=3.
Объяснение:
(х+1)√(16-х⁴)≥0
Найдем корни.
х+1=0; х=-1.
16-х⁴=0
х⁴=16.
х=±2.
Отложим корни на оси х. Методом интервалов определим ,где наша функция положительная или равна нулю. (все точки закрашены).
х∈[-2 ; -1]∪[2;+∞).