М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ппопцгуарг
ппопцгуарг
14.12.2022 05:24 •  Алгебра

Закінчіть розкладання на множники-
a (b-c)-(b-c)=(b-c)...

👇
Ответ:
ffoxyyyy1
ffoxyyyy1
14.12.2022

Объяснение:

a (b-c)-(b-c)=(b-c)...

a (b-c)-(b-c) = a(b-c)-1(b-c)=(a-1)(b-c) = (b-c)(a-1)

4,8(45 оценок)
Открыть все ответы
Ответ:
Юлия34567
Юлия34567
14.12.2022

5 месяцев

Объяснение:

В начале года у Вани и Дани была одинаковая сумма x руб.

Даня в нечётные месяцы прибавлял 50%, а в чётные тратил 20%.

И накопил нужную сумму за 10 месяцев.

В 1 месяц стало 1,5x руб.

Во 2 месяц стало 0,8*1,5x = 1,2x руб

В 3 месяц стало 1,5*0,8*1,5x = 0,8*1,5^2*x руб.

В 4 месяц стало 0,8*0,8*1,5^2*x = 0,8^2*1,5^2*x = (0,8*1,5)^2*x = 1,2^2*x

... И т.д.

В 10 месяц стало (0,8*1,5)^5*x = 1,2^5*x руб.

А Ваня прибавлял каждый месяц 20%.

В 1 месяц стало 1,2x руб.

Во 2 месяц стало 1,2^2*x руб.

... И т.д.

И в конце концов он тоже набрал сумму 1,2^5*x руб.

Очевидно, это произошло через 5 месяцев.

4,7(21 оценок)
Ответ:
врошдщ
врошдщ
14.12.2022

Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y -  производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1

1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.

Решив совместно эти два  уравнения , получаем : x=12, y=24.

Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1

По формуле  t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.

ответ: 10 ч.

Поставь лучший ответ

4,5(7 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ