5 месяцев
Объяснение:
В начале года у Вани и Дани была одинаковая сумма x руб.
Даня в нечётные месяцы прибавлял 50%, а в чётные тратил 20%.
И накопил нужную сумму за 10 месяцев.
В 1 месяц стало 1,5x руб.
Во 2 месяц стало 0,8*1,5x = 1,2x руб
В 3 месяц стало 1,5*0,8*1,5x = 0,8*1,5^2*x руб.
В 4 месяц стало 0,8*0,8*1,5^2*x = 0,8^2*1,5^2*x = (0,8*1,5)^2*x = 1,2^2*x
... И т.д.
В 10 месяц стало (0,8*1,5)^5*x = 1,2^5*x руб.
А Ваня прибавлял каждый месяц 20%.
В 1 месяц стало 1,2x руб.
Во 2 месяц стало 1,2^2*x руб.
... И т.д.
И в конце концов он тоже набрал сумму 1,2^5*x руб.
Очевидно, это произошло через 5 месяцев.
Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y - производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1
1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.
Решив совместно эти два уравнения , получаем : x=12, y=24.
Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1
По формуле t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.
ответ: 10 ч.
Поставь лучший ответ
Объяснение:
a (b-c)-(b-c)=(b-c)...
a (b-c)-(b-c) = a(b-c)-1(b-c)=(a-1)(b-c) = (b-c)(a-1)