x^2 - 3x + 2 = (x - 1)(x - 2) < 0
Решением этого неравенства является промежуток (1, 2)
Разложим на множители левую часть второго неравенства:
ax^2 - (3a + 1)x + 3 = (ax^2 - x) - (3ax - 3) = x(ax - 1) - 3(ax - 1) = (x - 3)(ax - 1) = a(x - 3)(x - 1/a)
Возможны 5 вариантов.
1) a > 1/3. Тогда решение неравенства – промежуток (1/a, 3). Нужно, чтобы промежуток (1, 2) полностью содержался в нём, так будет, если 1/a < 1. Объединяем с условием a > 1/3 и получаем часть ответа: a > 1.
2) a = 1/3. У второго неравенства нет решений.
3) 0 < a < 1/3. Решение неравенства – промежуток (3, 1/a); такой промежуток никогда не содержит (1, 2).
4) a = 0. Второе неравенство превращается в 3 - x < 0, x > 3. Не подходит.
5) a < 0. Решение второго неравенства – промежуток (1/a, 3), при этом 1/a < 0. Подходит.
ответ.
= 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*)
Заметим, что
1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9
2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a =
= (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a)
Подставляем
(*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a =
= 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a =
= 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 =
= 10(sin^2 a - 1/10)^2 + 109/10
Минимальное значение квадрата равно 0, а всего выражения 109/10.