М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Зте
Зте
06.01.2020 22:58 •  Алгебра

Постройте график линейной функции: 2) у=2х+6
3) у=-1,5х-3

👇
Ответ:
rikitakata
rikitakata
06.01.2020

Объяснение:

у=2х+6

корни(-3;0)

у=-1.5х-3

корни(-2:0)


Постройте график линейной функции: 2) у=2х+63) у=-1,5х-3
Постройте график линейной функции: 2) у=2х+63) у=-1,5х-3
Постройте график линейной функции: 2) у=2х+63) у=-1,5х-3
Постройте график линейной функции: 2) у=2х+63) у=-1,5х-3
4,4(3 оценок)
Открыть все ответы
Ответ:
Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
⇒ а⁴+b⁴ ≥ a³b+ab³
4,6(10 оценок)
Ответ:
dgfdgrrfd
dgfdgrrfd
06.01.2020

1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.

D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.

2) Найди корни квадратного уравнения x²+7x+12=0.

По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.

3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.

Рациональным будет метод введения новой переменной.

Пусть 5x−15 = t, тогда имеем:

2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1

t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.

Возвращаемся к замене:

5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.

5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.

ответ: 3,4; 3,3.

4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.

x−2,1 = 0 или x−31 = 0.

х₁ = 2,1            х₂ = 31.

ответ: 2,1; 31.

5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).

Полученная дробь: (х - 4)/(х + 6).

6)Сократи дробь (5x²−32x+12)/(x³−216).

5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.

x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4

Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =

= (5x - 2)/(x² + 6x + 36).

7) Разложи на множители квадратный трехчлен  x² + 8x + 15.

x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.

имеем, x² + 8x + 15 = (x + 3)(x + 5).

4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ