Интеграл от 5 до 10 (x^2 + 30x - 8x)dx = Интеграл от 5 до 10 ((x в 3 степени : на 3) + 30 * (х^ : 2) - 8 * (х^ :2) = (x в 3 степени : на 3) + 15х^ - 4х^ вертикальная риска от 5 до 10 = 10 в 3 степени : 3 + 15* 10^ - 4*10^ - ((5 в 3 степени :3) + 15 * 5^ - 4* 5^ = ну а дальше все легко, просто посчитай. Фух, решил за минуту писал 15 :DDD
Для приведенного квадратного уравнения (т.е. такого, коэффициент при x² в котором равенединице) x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q:
В случае неприведенного квадратного уравнения ax² + bx + c = 0:
x1 + x2 = -b / a x1 · x2 = c / aТеорема Виета хороша тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 · x2. Так, еще не зная, как вычислить корни уравнения x² – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, апроизведение должно равняться –1.Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 · 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
Интеграл от 5 до 10 (x^2 + 30x - 8x)dx = Интеграл от 5 до 10 ((x в 3 степени : на 3) + 30 * (х^ : 2) - 8 * (х^ :2) = (x в 3 степени : на 3) + 15х^ - 4х^ вертикальная риска от 5 до 10 = 10 в 3 степени : 3 + 15* 10^ - 4*10^ - ((5 в 3 степени :3) + 15 * 5^ - 4* 5^ = ну а дальше все легко, просто посчитай. Фух, решил за минуту писал 15 :DDD