М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
egorjanov2200
egorjanov2200
14.03.2023 07:54 •  Алгебра

Найдите область определения функции игрек равно 2 x / x - 5​


Найдите область определения функции игрек равно 2 x / x - 5​

👇
Ответ:
miki745
miki745
14.03.2023

Объяснение:

x-5 не равно 0

x не равно 5

4,4(89 оценок)
Открыть все ответы
Ответ:
sonyafeldman
sonyafeldman
14.03.2023

вспомним что такое модуль

|x| = x  x>=0

    = -x  x<0

Пишем на всякий случай ОДЗ x≠3 и смотрим подмодульное выражение

(x²+x-2)/(x-3) = (x+2)(x-1)/(x-3)

D=1+8 = 9

x12=(-1+-3)/2 = -2 1

смотрим метод интервалов

[-2] [1] (3)

Итак при

1. x∈[-2 1) U (3 + ∞)

|(x²+x-2)/(x-3)| = (x²+x-2)/(x-3)

2. x∈(-∞-2) U [1  3)

|(x²+x-2)/(x-3)| = - (x²+x-2)/(x-3)

решаем полученные уравнения

1. x∈[-2 1] U (3 + ∞)

(x²+x-2)/(x-3) = (x²+x-2)/(x-3) решения все числа на интервалах с учетом одз

x∈[-2 1) U (3 + ∞)

2. x∈(-∞-2) U (1  3)

(x²+x-2)/(x-3) = - (x²+x-2)/(x-3)

2(x²+x-2)/(x-3) = 0

x=1  x=-2 решений нет

ответ x∈[-2 1] U (3 + ∞)

4,7(84 оценок)
Ответ:
Kjabarovsk
Kjabarovsk
14.03.2023
ax^2-(a^2+5)x+3a-5=0&#10;
 Если  у  данного  уравнения существуют два различных натуральных корня X1 и X2 , то   их  сумма и произведение -  тоже натуральные числа.  тогда  по теореме Виета:

x_{1} *x_{2} = \frac{3a-5}{a} \\

 \frac{3a-5}{a} = n_{1} ,    где   n1  -   нат. число.  Тогда

3a-5 = n_{1}*a \\
Правая часть данного равенства делится на a,  значит и левая должна тоже делиться на a.  Слева имеем сумму двух слагаемых,  чтобы это сумма делилась на a,  надо чтобы оба слагаемых делились на a.

3a  делится на а,  и 5 должно делиться на а.  Т.о.  а∈{ -5, -1, 1, 5}.
 
Подставляем поочередно эти  значения а  в  выражение \frac{3a-5}{a} .

a=-5, \frac{3*(-5)-5}{-5}= \frac{-20}{-5}= 4 \\ &#10;a=-1, \frac{3*(-1)-5}{-1}= \frac{-8}{-1}= 8 \\ &#10;a=1, \frac{3*1-5}{1}= \frac{-2}{1}= -2 \\ &#10;a=5, \frac{3*5-5}{5}= \frac{10}{5}= 2 \\

Т.о.  натуральное значение  выражение принимает при а=-5,  а=-1 и а=5.
По  т.Виета x_{1} + x_{2} = \frac{a^2+5}{a} \\
Проверим при каких из этих значений сумма корней исходного уравнения будет  натуральным числом:

a=-5; \frac{(-5)^2+5}{-5} = \frac{30}{-5} = -6 \\ &#10;a=-1; \frac{(-1)^2+5}{-1} = \frac{6}{-1} = -6 \\ &#10;a=5; \frac{5^2+5}{5} = \frac{30}{5} = 6 \\

Итак, уравнение может иметь два различных натуральных корня только при  a=5.  Проверим  будут ли этом значении  а  корни исходного уравнения натуральными числами.  
При   a=5.  уравнение примет вид:  
 5 x^{2} - 30x +10 =0 \\ &#10; x^{2} - 6x +2 =0 \\&#10;D = 28&#10;
значит корни будут иррациональными.

ответ:  ∅.
4,5(74 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ