1 Число делится на 11, если знакопеременная сумма его цифр (последняя цифра со знаком +) делится на 11.
2 Число делится на 7, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 7.
3 Число делится на 13, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 13.
4 Остаток от деления числа на 11 равен остатку от деления на 11 знакопеременной суммы его цифр (последняя цифра со знаком +)
5 Остаток от деления числа на 7 равен остатку от деления на 7 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).
6 Остаток от деления числа на 13 равен остатку от деления на 13 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).
7 Для доказательства необходимо рассмотреть разность между самим числом и знакопеременной суммой его цифр (троек).Комментарии
Объяснение:
5;- 7;√36; 3,1; 3/5× √5; -0,1; -0.4×√2;10;- 5 1/8;
а)5;√36;10;
б)3,1;
Натуральные числа- числа, которые употребляются при счете предметов
- 7 =-7/1 - рациональное, не является положительным
√36=6 - натур.
3,1=31/10 - рациональное
3/5× √5 иррациональное √5 - иррационально
-0.1 - рациональное, но не является положительным
-0.4×√2 - иррационально так как √2 - иррационально
10 - натуральное
- 5 1/8=-41/8 - рационально, но не положительно
Рациональное число — число, которое можно представить обыкновенной дробью, числитель которого — целое число, а знаменатель— натуральное число.