М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nadia6191
nadia6191
22.03.2023 05:20 •  Алгебра

Установите соответствие между неравенствами и множеством его решений​


Установите соответствие между неравенствами и множеством его решений​

👇
Ответ:
mdotsenko
mdotsenko
22.03.2023

1. x^2-10x+25<=0

(x-5)^2<=0

x-5<=0

x<=5

x=5

2. x^2-10x+25<0

x-5<0

x<5

нет решения

3. x^2-10x+25>=0

(x-5)^2>=0

x-5>=0

x>=5

x=5

xe(-00;+00)

4. x^2-10x+25>0

x-5>0

x>5

(-00;5)U(5;+00)

Объяснение: Это ОДЗ

4,4(13 оценок)
Открыть все ответы
Ответ:
алик137
алик137
22.03.2023
Доказательство:

Пусть n натуральное число, тогда 2n-1 будет натуральным и нечётным числом. Возведем данное число в квадрат:

(2n-1)^2=(2n)^2-4n+1=4n^2 -4n+1

Вычтем 1 и получим:

4n^2-4n

Докажем с математической индукции, что данное число делиться на 8:

При n=1\Rightarrow 4-4=0, 0 делиться на 8, следовательно условие выполняется.

Предположим что данное число делиться на 8 при некотором n. Докажем что данное число делиться на 8 при n+1:

4(n+1)^2-4(n+1)=4(n^2+2n+1)-4n+4=\\\\=4n^2+8n+4-4n+4=(4n^2-4n)+8n+8=\\\\(4n^2-4n)+8(n+1)

По предположению 4n^2-4n делиться на 8. Следовательно, существует натуральный k так что:

4n^2-4n=8k

Отсюда:

(4n^2-4n)+8(n+1)=8k+8(n+1)=8(k+n+1) следовательно, при n+1 данное число тоже делиться на 8. Ч.Т.Д.
4,5(48 оценок)
Ответ:
syamiulinlinar
syamiulinlinar
22.03.2023
Доказательство:

Пусть n натуральное число, тогда 2n-1 будет натуральным и нечётным числом. Возведем данное число в квадрат:

(2n-1)^2=(2n)^2-4n+1=4n^2 -4n+1

Вычтем 1 и получим:

4n^2-4n

Докажем с математической индукции, что данное число делиться на 8:

При n=1\Rightarrow 4-4=0, 0 делиться на 8, следовательно условие выполняется.

Предположим что данное число делиться на 8 при некотором n. Докажем что данное число делиться на 8 при n+1:

4(n+1)^2-4(n+1)=4(n^2+2n+1)-4n+4=\\\\=4n^2+8n+4-4n+4=(4n^2-4n)+8n+8=\\\\(4n^2-4n)+8(n+1)

По предположению 4n^2-4n делиться на 8. Следовательно, существует натуральный k так что:

4n^2-4n=8k

Отсюда:

(4n^2-4n)+8(n+1)=8k+8(n+1)=8(k+n+1) следовательно, при n+1 данное число тоже делиться на 8. Ч.Т.Д.
4,6(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ