Объяснение:
1.
а) 3x²+13x-10=0; D=169+120=289
x₁=(-13-17)/6=-30/6=-5
x₂=(-13+17)/6=2/3
ответ: -5 и 2/3.
б) 2x²-3x=0; x(2x-3)=0
x₁=0
2x-3=0; 2x=3; x₂=3/2=1,5
ответ: 0 и 1,5.
в) 16x²=49; (4x)²=49; 4x=±7
x₁=-7/4=-1,75
x₂=7/4=1,75
ответ: -1,75 и 1,75.
г) x²-2x-35=0
x₁+x₂=2; 7-5=2
x₁x₂=-35; 7·(-5)=-35
ответ: -5 и 7.
2.
a - ширина прямоугольника, см; b - длина прямоугольника, см.
Система уравнений:
2(a+b)=30; a+b=15; b=15-a
ab=56
a(15-a)=56
15a-a²-56=0
a²-15a+56=0
a₁+a₂=15; 7+8=15
a₁a₂=56; 7·8=56
Так как ширина меньше длины, то:
a₁=7 см и b₁=15-7=8 см
ответ: ширина прямоугольника 7 см, длина прямоугольника 8 см.
3.
x²+11x+q=0
При x₁=-7:
(-7)²+11·(-7)+q=0
49-77+q=0
q=28
x²+11x+28=0
x₁+x₂=-11; -7-4=-11
x₁x₂=28; -7·(-4)=28
x₂=-4
ответ: q=28; x₂=-4.
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
ответ: 0,02332 га = 2,332*10⁻² га
объяснение:
стандартный вид числа где ∈ (n-порядковый номер числа u)
1)
3,81*106 л = 403,86 л
1 л = 1 дм³
1 м³ = 1000 дм³
403,86 л = 403,86 дм³ = 0,40386 м³
0,40386 м³ = 4,0386 * 10⁻¹ м³
2)
54*105 км/ч = 5670 км/ч
1 км = 1000м
1 ч = 3600 с
5670 км/ч = (5670*1000 м)/3600 с = 1575 м/с
1575 м/с = 1,575 * 10³ м/с
3)
2,3*108 м² = 248,4 м²
1 га = 10000 м²
248,4 м² = 0,02484 га
0,02484 га = 2,484*10⁻² га
4)
3,21*106 л = 340,26 л
1 л = 1 дм³
1 м³ = 1000 дм³
340,26 л = 340,26 дм³ = 0,34026 м³
0,34026 м³ = 3,4026 * 10⁻¹ м³
5)
72*103 км/ч = 7416 км/ч
1 км = 1000м
1 ч = 3600 с
7416 км/ч = (7416*1000 м)/3600 с = 2060 м/с
2060 м/с = 2,06 * 10³ м/с
6)
2,2*106 м² = 233,2 м²
1 га = 10000 м²
233,2 м² = 0,02332 га
0,02332 га = 2,332*10⁻² га