рассмотрим четырехугольник авсе
1. отрезок вд равен отрезку ед (по условию),
2. отрезок сд равен отрезку ад (вд - медиана),
следовательно, четырехугольник авсе - параллелограмм ( по свойству диагоналей параллелограмма).
значит, прямые вс и ае параллельны.
рассмотрим углы всд и еад: прямая вс параллельна ае ( по свойству параллелограмма), ас - секущая (пересекает обе прямые), значит угол всд = еад = 40 градусов.
угол вае равен сумме углов вад и еад, значит угол вае = 40 + 56 = 96 градусов.
ответ: угол вае равен 96 градусов.
5t^2 - 12t + 4 = 0
D=144 - 4*4*5 = 64
t1 = (12 - 8)/10 = 4/10 = 2/5
t2 = (12+8)/10 = 20/10 = 2 > 1 - посторонний корень
cosx = 2/5
x = +- arccos(2/5) + 2πk
x∈[-5π/2;-π]
1) -5π/2 ≤ arccos(2/5) + 2πk ≤ -π - во всех частях неравенства отнимем аркосинус, и получившееся выражение разделим на 2пи:
-5/4 - (arccos(2/5))/(2π) ≤ k ≤ -0.5 - (arccos(2/5))/(2π), => k= -1
2) -5π/2 ≤ -arccos(2/5) + 2πk ≤ -π - во всех частях неравенства прибави аркосинус, и получившееся выражение разделим на 2пи:
-5/4 + (arccos(2/5))/(2π) ≤ k ≤ -0.5 + (arccos(2/5))/(2π), => k= -1
Значит, нужный корень существует при k=-1
x = +-arccos(2/5) - 2π