В коробке есть 11 белых, 7 черных, 10 красных и 13 зеленых шаров. Какое наименьшее количество шаров надо вынуть из коробки чтобы получить 5 шаров одного цвета?
Пусть второй рабочий в час делает х деталей, тогда первый рабочий в час делает х+3 детали Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов, тогда второй рабочий на производство 150 деталей затрачивает 150/х часов Составим уравнение: 150/х-112/(х+3)=2 150/х-112/(х+3)-2=0 Общий знаменатель х(х+3), тогда (150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение: 150х+450 -112х-2х²-6х=0 32х-2х²+450=0 (умножим на -1) 2х²-32х-450=0 (сократим на 2) х²-16х-225=0 Найдем дискриминант: D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156 х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25 х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит ответ: Второй рабочий в час изготовляет 25 деталей.
15 = 3•5 Значит n(n+1) + 2 надо попытаться разделить и на 3, и на 5.
Признак делимости на 3: сумма цифр, из которых состоит число, должно делиться на 3. Признак делимости на 5: делимое должно заканчиваться либо на 0, либо на 5.
n²+n+2 = n(n+1) + 2
Получается, что к произведению двух идущих подряд натуральных чисел прибавляется 2.
Чтобы в конце этой суммы получалось 5 либо 0, надо, чтобы n(n+1) оканчивалось на 3 либо 8.
Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов,
тогда второй рабочий на производство 150 деталей затрачивает 150/х часов
Составим уравнение:
150/х-112/(х+3)=2
150/х-112/(х+3)-2=0
Общий знаменатель х(х+3), тогда
(150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение:
150х+450 -112х-2х²-6х=0
32х-2х²+450=0 (умножим на -1)
2х²-32х-450=0 (сократим на 2)
х²-16х-225=0
Найдем дискриминант:
D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156
х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25
х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит
ответ: Второй рабочий в час изготовляет 25 деталей.