Пусть t(ч) — время, за которое Пончик съедает три плюшки, x(км/ч) — скорость автобуса. В момент времени, когда мимо Пончика проехал автомобиль, автобус находился от него на расстоянии 2xt км, а мотоцикл — на расстоянии 30t км. Cпустя a часов, в тот момент времени, когда мимо Сиропчика проехал мотоцикл, автомобиль находился от него на расстоянии 60t км, а автобус — на расстоянии 2xt км от мотоцикла, следовательно, на расстоянии 2xt – 60t км от автомобиля. Сравнивая расстояния, пройденные автомобилем и мотоциклом получаем уравнение a(60 – 30) = 60t + 30t, откуда , а сравнивая расстояния, пройденные автобусом и автомобилем, получаем уравнение a(60 – x) = (2xt – (2xt – 60t)) = 60t, откуда .
ответ: 40 км/ч.
М(-8/11; 5 4/11)
Объяснение:
Решим систему линейных уравнений
y=-6х+1
y = 5х+9
-6х+1=5х+9; -11х=8; х=-8/11; у=(-6) * (-8/11) + 1 = 59/11 = 5 4/11
Графики пересекутся в т. М(-8/11; 5 4/11)