Объяснение:
1) Треугольники ABM и CBM
AB=BC (по условию)
BM - общая
∠M=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
2) Треугольники FDN и NKF
DN=FK (по условию)
FN - общая
∠D=∠K=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
3) Треугольники SDO и SPO
∠D=∠P=90° (по условию)
SO - общая
∠SOD=∠SOP (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
4) Треугольники RMX и XNR
RX - общая
∠MXR=∠NRX (по условию)
∠M=∠N=90° (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
Треугольники MRT и NXT:
RT=XT (тк ∠MXR=∠NRX (по условию), треугольник RTX - равнобедренный (по свойству))
∠M=∠N=90° (по условию)
Из доказательства пары этого пункта ∠MRX=∠NXR (соотв. элементы равных фигур равны), но ∠MXR=∠NRX (по условию)=> ∠MRT=∠NXT
Вывод: треугольники равны по гипотенузе и острому углу
тогда стоимость одной акции = 110000 / х (р.)
110000 / (х-20) = (110000 / х) + 50
110000 / (х-20) - (110000 / х) = 50
110000 * (1 / (х-20) - 1 / х) = 50
(х-х+20) / (х(х-20)) = 5 / 11000
х(х-20) = 44000
х² - 20х - 44000 = 0 44000 = 440 * 100 = 220 * 200
по т.Виета корни (220) и (-200)
ответ: предприниматель приобрел 220 акций.
ПРОВЕРКА:
стоимость одной акции = 110000 / 220 = 1000 / 2 = 500 (р.)
стоимость одной акции через год = 550 (р.)
110000 / 550 = 1000 / 5 = 200 акций ---это на 20 акций меньше))