М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
son9a
son9a
08.12.2021 15:29 •  Алгебра

построй на координатной плоскости линейные функции а)y=-2x+1 б)3x-4

👇
Ответ:
natalirm
natalirm
08.12.2021

а) черная прямая

б) синяя прямая


построй на координатной плоскости линейные функции а)y=-2x+1 б)3x-4
4,6(13 оценок)
Открыть все ответы
Ответ:
Урлатоп
Урлатоп
08.12.2021

ответ:Извиняюсь что не в том порядке

Объяснение:

б) Используя cos (t)² = 1-sin (t)² запишем выражение в развёрнутом виде

1-sin (a)²/sin (a)+1

Использу а²-b²=(a-b)(a+b) разложим на множители выражение

(1-sin (a))*(1+sin(a))/sin(a)+1

Дальше мы можем сократить дробь на sin(a)+1

отсюда 1-sin(a)

a) Упростим выражение Sin^2 a/(1 + cos a).  

Известно, что sin^2 a + cos^2 a = 1, тогда sin^2 a = 1 - cos^2 a. Подставим вместо sin^2 a выражение 1 - cos^2 a, тогда:  

Sin^2 a/(1 + cos a) = (1 - cos^2 a)/(1 + cos a);  

разложим числитель дроби на множители, используя формулу сокращенного умножения разности квадратов и получим:  

(1^2 - cos^2 a)/(1 + cos a) = (1 - cos a) * (1 + cos a)/(1 + cos a);  

Числитель и знаменатель дроби сокращаем на (1 + cos a) и тогда останется:  

(1 - cos a) * 1/1 = 1 - cos a;  

Значит, sin^2 a/(1 + cos a) = 1 - cos a.        

4,7(57 оценок)
Ответ:
jiohjb
jiohjb
08.12.2021
Скорее всего, в этом условии есть ошибка. Согласно школьной программе степенная функция с дробным показателем определена только для неотрицательных х. (см., например, учебник Мордкович А.Г., "Алгебра 10-11 и начала математического анализа. Часть 1"  14 издание, Москва 2013 г., стр. 220-221.)
 
Но и в текущей постановке эту задачу можно считать корректной и решить, хотя это и не так интересно. Поскольку в условии не указана конкретная точка, через которую должна проходить касательная (а сказано только, что у нее абсцисса должна быть -1), возьмем любую касательную к графику функции f(x) и на этой касательной возьмем точку с абсциссой x0=-1. 
f'(x)=(4/5)x^(-1/5). При х=1, f'(1)=4/5, f(1)=1. Значит уравнение касательной 
y=4(x-1)/5+1, т.е. y=4x/5+1/5. Очевидно, точка М(-1; -3/5) лежит на касательной. Итак, прямая c уравнением y=4x/5+1/5 является касательной к графику функции f(x)=x^(4/5) и проходит через точку M(-1;-3/5) c абсциссой -1 (хотя сама точка М не лежит на графике). Понятно, что таких точек можно найти сколько угодно, т.к. можно брать любые касательные. В такой постановке задача, конечно неинтересна. Собственно поэтому я и думаю, что в условии ошибка.

P.S. На всякий случай присоединяю скрин из учебника, в качестве подтверждения моих слов про область определения степенной функции с дробным показателем. Обратите внимание на упражнение г) и на замечание ниже.
Составьте уравнение касательной к графику функции f(x) в точке с абциссой x0: f(x)= x0= -1
Составьте уравнение касательной к графику функции f(x) в точке с абциссой x0: f(x)= x0= -1
4,5(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ