Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
Пусть х км/ч - скорость течения реки, составим таблицу: Скорость Время Расстояние по течению 18+х (км/ч) всего 80 км против теч 18-х (км/ч) 9 ч 80 км По времени в пути составляем уравнение: 80 /(18+х) + 80/(18-х) = 9 приводим к обще знаменателю: (18-х)(18+х) и отбратываем его, заметив, что х≠18, х≠-18, получаем: 80(18-х)+80(18+х)=9(324-х²) 1440 - 80х+1440+80х-2916+9х²=0 9х²=-1440-1440+2916 9х² = 36 х² = 4 х=2 (км/ч) - скорость течения реки х=-2 не подходит под условие задачи, скорость>0