1) при а=0 и а≠-1 уравнение будет линейным и имеет один корень: -(a+1)x+a=0 x=a/(a+1) - корень уравнения 2) при а≠0 уравнение будет квадратным и имеет два корня, если его дискриминант больше нуля. D=(-(a+1))²-4*a*a=a²+2a+1-4a²=1+2a-3a² 1+2a-3a²>0 3a²-2a-1<0 D=(-2)²-4*3*(-1)=4+12=16=4² a(1)=(2+4)/(2*3)=6/6=1 a(2)=(2-4)/(2*3)=-2/6=-1/3 3(a-1)(a+ 1/3)<0 + - + _____________-1/3___________1_________
a∈(-1/3;1) и a≠0, т.е. при a∈(-1;0)U(0;1/3) уравнение имеет 2 корня
1) при а=0 и а≠-1 уравнение будет линейным и имеет один корень: -(a+1)x+a=0 x=a/(a+1) - корень уравнения 2) при а≠0 уравнение будет квадратным и имеет два корня, если его дискриминант больше нуля. D=(-(a+1))²-4*a*a=a²+2a+1-4a²=1+2a-3a² 1+2a-3a²>0 3a²-2a-1<0 D=(-2)²-4*3*(-1)=4+12=16=4² a(1)=(2+4)/(2*3)=6/6=1 a(2)=(2-4)/(2*3)=-2/6=-1/3 3(a-1)(a+ 1/3)<0 + - + _____________-1/3___________1_________
a∈(-1/3;1) и a≠0, т.е. при a∈(-1;0)U(0;1/3) уравнение имеет 2 корня
Решим методом промежутков, учитывая область определения
z^2 - 1 ≠ 0 => z ≠ ±1
Преобразуем и перепишем неравенство в следующем виде:
(z^2 + 1)(z - 12)(z + 12)/(z^2 - 1)>0
Нули функции f(z) = (z^2 + 1)(z - 12)(z + 12)/(z^2 - 1): z=-12, z=-1, z=1, z=12
На промежутке:
1) (-∞, -12), f(z)>0
2) (-12, -1), f(z)<0
3) (-1, 1), f(z)>0
4) (1, 12), f(z)<0
5) (12, +∞), f(z)>0
То есть неравенство имеет решение на промежутках 1, 3, 5, т.е. z € (-∞, -12) U (-1, 1) U (12, +∞)