Пусть х-это скорость течения реки.Тогда скорость по течению реки будет (18+х),а против течения реки будет (18-х). Составим уравнение 50 км/(18+х) + 8км/(18-х) = 3 часа 50·(18-х) + 8·(18+х) - 3·(18+х)·(18-х) =0 (только х≠18 , чтобы знаменатель не был равен нулю) 900 -50х + 144 + 8х - ( 54+3х)·(18-х)=0 1044 -42х - (972-54х+54х-3х²)=0 1044 - 42х -972 +54х -54х +3х²=0 3х²-42х+72=0 разделим всё на 3,каждый член, для облегчения решения х²- 14х+ 24 =0 Д=196-4·1·24=100 х= 12 и х=2 Скорость реки не может быть почти равной скорости теплохода, поэтому х=12 мы не принимаем за ответ. ответ: х=2км/ч
Примем за базу индукции n=5. Проверим истинность выражения при n=5: . Получили верное неравенство => базис доказан.
Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется: . Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5. Используем наше предположение: => => .
Проверим истинность последнего неравенства: .
Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.
Объяснение:
a) x принадлежит R , линейная функция.
второй пример непонятен