ответ: h1=h5=5/3м = 1 2/3 м
h2=h4=8/3м= 2 2/3 м
Объяснение:
Учитывая , что OB - ось симметрии параболы , то в качестве начала координат выберет точку O . Тогда AC лежит на оси x , а OB лежит на оси y. Поскольку вершина лежит на оси y , то парабола имеет вид:
y=a*x^2 +b
Коэффициент b соответствует вершине параболы
b=OB= 3м
Длинны отрезков OA=OC=12/2=6 соответствуют положительному корню параболы :
a* 6^2+3=0
a= -3/36= -1/12
Таким образом парабола имеет вид:
y= 3 - x^2/12
Найдём высоты столбов
Нумерацию столбов будем считать слева направо.
h1=h5=y(+-4м)=3 -16/12 = 3-4/3= 5/3 м
h2=h4=y(+-2м)=3 -4/12= 3-1/3= 8/3 м
В решении.
Объяснение:
1)Является ли вид одночлена 36аb^2*ac*3*e^3 стандартным? ответ обоснуйте. В случае, если вид не стандартный, приведите одночлен к стандартному виду.
Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.
Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
36аb²*ac*3*e³; 108а²b²ce³ - станд. вид.
2)Для одночлена 6x²*y³*0,5z укажите коэффициент и степень.
3x²y³z - станд. вид; коэф. 3; степень 2+3+1=6.
3)Среди выражений выберите одночлены, перечислите их: 4xy; -0,5x²y; 64; x+8; 0; a/7; 1-x; 7/x; 0,2x*4y; (-2y)/8. Свой ответ обоснуйте.
К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.
4)Для одночлена abc укажите коэффициент и степень. Коэф. 1 , степень 1+1+1=3.
5) Верно ли утверждение, что степень одночлена - это самая большая степень его переменной? ответ обоснуйте .
Нет, не верно. Сумму показателей степени переменных называют степенью одночлена.