Решение: Обозначим объём воды в бассейне за 1(единицу), а наполнение водой бассейна в час первой трубой за (х), а второй трубой за час (у), тогда наполнение бассейна водой обеими трубами наполняется за: 1/ ((х+у)=6 (часов) Если наполнить бассейн первой трубой, бассейн наполнится за: 1/х=10 (часов) Решим эту систему уравнений: 1/(х+у)=6 1/х=10
1=6*(х+у) 1=10*х 1=6х+6у 1=10х Из второго уравнения найдём значение (х) х=1:10 х=0,1 Подставим значение (х) в уравнение: 1=6х+6у 1=6*0,1+6у 6у=1-0,6 6у=0,4 у=0,4 :6 у=4/10 : 6=4/10*6=4/60=2/15 И так как заполнение бассейна второй трубой в час равно у=2/15, то вторая труба заполнит бассейн за : 1 : 2/15=15/2=7,5 (часа)
ответ: Бассейн заполнится второй трубой за 7,5 часов
ответ:1) Задание
Дана функция
найти промежутки возрастания и убывания
По признаку возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Найдем производную данной функции
найдем точки экстремума, точки в которых производная равна нулю
отметим точки на числовой прямой и проверим знак производной на промежутках
___+-+__
0 2
Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает
на промежутке (0;2) функция убывает
точки х=0 точка минимума, х=2 точка максимума
Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].
Заметим, что х=2 точка максимума не входит в данный промежуток,
а х=0 принадлежит данному промежутку
Проверим значение функции в точке х=0 и на концах отрезка
Значит наибольшее значение функции на отрезке [-2;1]
в точке х=0 и у(0)=1
значит наименьшее значение функции на отрезке [-2;1]
в точке х=-2 и у(-2)= -19
2. Напишите уравнение к касательной к графику функции
f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.
Уравнение касательной имеет вид
найдем производную данной функции
найдем значение функции и производной в точке х=1
подставим значения в уравнение касательной
Объяснение: