М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
4ev43yi3
4ev43yi3
25.01.2022 06:33 •  Алгебра

1)x(2x+3)-8=2x^2+11x 2)7x-(3x-1)^2=10-(3x-1)(3x+1) 3)решите квадратное уравнение: 2x^2+9x+4=0 4): найдите два натуральных числа, если первое число в 3 раза больше, чем второе, а их произведение равно 48 мне уже завтра это надо

👇
Ответ:
RMaGaR
RMaGaR
25.01.2022

1)2x²+3x-8=2x²+11x 2x²+3x-8-2x²-11x=0 -8x=8 x=-1

2)7x-(9x²-6x+1)=10-(9x²-1) 7x-9x²+6x-1=10-9x²+1 7x-9x²+6x-1-10+9x²-1=0 13x=12 x=12/13

3)2x²+9x+4=0

D=81-4*2*4=81-32=49

x1=(-9+7)/4=-0.5 x2=(-9-7)/4=-4

4)1 число - 3х

2 число - х

3х*х=48

3х²=48

х²=16

х=4

х=-4 (не натуральное)

1 число - 12

2 число- 4

 

Выбираем лучшее решение!

4,7(4 оценок)
Открыть все ответы
Ответ:
kucharin
kucharin
25.01.2022
Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).

u'_x=(xz*tg\sqrt{y})'_x=z*tg\sqrt{y}
u'_y=(xz*tg\sqrt{y})'_y=xz*\frac{1}{cos^2\sqrt{y}}*(\sqrt{y})'=\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})}\\u'_z=(xz*tg\sqrt{y})'_z=xtg\sqrt{y}

Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
w=2x\rightarrow w'_x=2\\w=yx\rightarrow w'_x=y\ \ \ (w'_y=x)\\w=y+x\rightarrow w'_x=1\ \ \ (w'_y=1)
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.

Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же  по 3 переменным.
u''_{x^2}=(z*tg\sqrt{y})'_x=0\\u''_{xy}=(z*tg\sqrt{y})'_y=\frac{z}{2\sqrt{y}*cos^2\sqrt{y}}\\u''_{xz}=(z*tg\sqrt{y})'_z=tg\sqrt{y}

Теперь рассматриваем производную по у. Её  2-уй производную берём снова по 3-ём переменным.
u''_{yx}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_x=\frac{z}{2\sqrt{y}*cos^2(\sqrt{y})}

u''_{y^2}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_y=\frac{(xz)'_y*2\sqrt{y}*cos^2(\sqrt{y})-xz*(2\sqrt{y}*cos^2(\sqrt{y}))'_y}{(2\sqrt{y}*cos^2(\sqrt{y}))^2}=\\=\frac{-2xz*(\frac{1}{2\sqrt{y}}*cos^2(\sqrt{y})+\sqrt{y}*2cos(\sqrt{y})*(-sin\sqrt{y})*\frac{1}{2\sqrt{y}})}{4ycos^4(\sqrt{y})}=\\=\frac{-2xz*\frac{cos\sqrt{y}}{2\sqrt{y}}(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4ycos^4(\sqrt{y})}=\frac{-xz(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4\sqrt{y^3}cos^3(\sqrt{y})}\\

u''_{yz}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_z=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}

Заметим что:
u''_{xy}=u''_{yx}
Такие равенства выполняются и для других смешанных производный, то есть:u''_{xz}=u''_{zx}

И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
u''_{zx}=u''_{xz}=tg\sqrt{y}\\u''_{zy}=u''_{yz}=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}\\u''_{z^2}=(xtg(\sqrt{x}))'_z=0

Ну вот и всё. Будут вопросы - спрашивайте.
4,5(86 оценок)
Ответ:
dmukh
dmukh
25.01.2022
log_3(x+3)=log_3(x^2+2x-3)  ОДЗ: x+3>0 => x>-3
x+3=x^2+2x-3                                  x^2+2x-3>0
x^2+2x-3-x-3=0                                x^2+2x-3=0
x^2+x-6=0                                         x₁+x₂=-2
x₁+x₂=-1                                            x₁*x₂=-3
x₁*x₂=-6                                             x₁=-3; x₂=1 => x<-3; x>1
x₁=-3 - не входит в ОДЗ                             x>1
x₂=2
     x=2

 log_2(2x-1)-2=log_2(x+2)-log_2(x+1)              ОДЗ: 2x-1>0 => x>0.5
 log_2(2x-1)-log_2(4)= log_2(x+2)-log_2(x+1)                      x+2>0 => x>-2            log_2((2x-1)/4)=log((x+2)/(x+1))                                              x+1>0 => x>-1           (2x-1)/4=(x+2)/(x+1)                                                                         x>0.5
(2x-1)(x+1)=4(x+2)
2x^2+x-1-4x-8=0
2x^2-3x-9=0
D=(-3)^2-4*2*(-9)=81 √81=9
x₁=3
x₂=-1.5 - не входит в ОДЗ
     х=3

 log_5(2x^2-x)/log_4(2x+2)=0               ОДЗ: 2x^2-x>0 => x>0.5
log(4)log(2x^2-2)/log(5)log(2x+2)=0               2x+2>0 => x>-1   
log(2x^2-x)/log(2x+2)=0
log(2x^2-x)=0
log(2x+2)≠0
2x^2-x=1
2x^2-x-1=0
D=9
x₁=1
x₂=-0.5 - не входит в ОДЗ
     x=1

log_2x(x^2+x-2)=1                    ОДЗ: 2x>0 => x>0
log_2x(x^2+x-2)=log_2x(2x)                x^2+x-2>0
x^2+x-2=2x                                          x^2+x-2=0
x^2-x-2=0                                              x₁+x₂=-1
x₁+x₂=1                                                 x₁*x₂=-2
x₁*x₂=-2                                                x₁=-2; x₂=1
 x₁=2                                                            x>1
x₂=-1 - не входит в ОДЗ
     x=2
   

                                                                                                                                                                                                                             
                                                                         
                                                                            

                                                        
4,6(80 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ