-1
Объяснение:
х^2-12х+35=(х-6)^2-1. Выражение (х-6)^2 всегда неотрицательно, згачит его мин знач равно нулю, следовательно наименьшее значение изначального выражения равно -1 при х=6
По оси х: 9 и (-9)
По оси у: 9 и (-9)
Объяснение:
Общий вид уравнения окружности:
(x-x0)^2 + (y-y0)^2 = R^2
Где (х0, у0) координаты центра окружности, а R - ее радиус
Если окружность имеет центр в начале координат, то уравнение примет вид:
х^2 + у^2 = R^2
Последнее уравнение похоже на данное нам, поэтому делаем вывод, что окружность имеет центр в начале координат, а ее радиус равен корню из 81. Т.е. радиус равен 9. На основе выше сказанного можно утверждать, что окружность пересекает оси координат в точках:
По оси х: 9 и (-9)
По оси у: 9 и (-9)
По оси х: 9 и (-9)
По оси у: 9 и (-9)
Объяснение:
Общий вид уравнения окружности:
(x-x0)^2 + (y-y0)^2 = R^2
Где (х0, у0) координаты центра окружности, а R - ее радиус
Если окружность имеет центр в начале координат, то уравнение примет вид:
х^2 + у^2 = R^2
Последнее уравнение похоже на данное нам, поэтому делаем вывод, что окружность имеет центр в начале координат, а ее радиус равен корню из 81. Т.е. радиус равен 9. На основе выше сказанного можно утверждать, что окружность пересекает оси координат в точках:
По оси х: 9 и (-9)
По оси у: 9 и (-9)
1.
а)
x²-12x+35=x²-12x+36-1=(x-6)²-1
b)
(x-6)²>0
x-6>0
x>6
При x=6 выражение равно: -1
ответ: -1