Сделаем замену y=пx, тогда получаем уравнение sin(y) = 1, это элементарное тригонометрическое уравнение, решаем его y = (п/2) + 2пn, где n пробегает все целые числа. Делаем обратную замену пx = (п/2) + 2пn, теперь разделим последнее уравнение на пи, x = (1/2) + 2n, по условию, выделим из данного семейства решений лишь положительные решения, то есть x>0. (1/2) + 2n>0; <=> 2n>-1/2, <=> n>-1/4. n является целым, среди целых только n>=0 удовлетворяют n>-1/4. Итак, x=(1/2) + 2n, где n целое и n>=0. наименьшим из таких иксов будет икс при n=0 (при возрастании номеров n, значения x=x(n) = (1/2) + 2n, лишь возрастают). При n=0, x=1/2.
по примеру реши.
x^3 - 6x^2 + 11x - 6 = 0 можно, конечно, решить формулой кардано для решения кубических уравнений, но это долго и трудно. проще подобрать корни схемой горнера. возможные рациональные корни x = a/b, где а - делитель свободного члена, b - делитель старшего коэффициента. x = 1, -1, 2, -2, 3, -3, 6, -6 находишь значения в этих точках. y(1) = 1 - 6 + 11 - 6 = 0 - повезло сразу! теперь раскладываем: x^3 - x^2 - 5x^2 + 5x + 6x - 6 = 0 (x - 1)(x^2 - 5x + 6) = 0 (x - 1)(x - 2)(x - 3) = 0 ответ: x1 = 1, x2 = 2, x3 = 3