Область определения функции D(у) - это множество всех допустимых значений аргумента x (независимой переменной x), при которых выражение, стоящее в правой части уравнения функции y = f(x) имеет смысл. Другими словами, это область допустимых значений выражения f(x).
Чтобы по графику функции y = f(x) найти ее область определения, нужно, двигаясь слева направо вдоль оси ОХ, записать все промежутки значений х, на которых существует график функции.
Множество значений фнкции Е(у) - это множество всех значений, которые может принимать зависимая переменная y.
Чтобы по графику функции y = f(x) найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.
Обратная функция — функция y=g(x), которая получается из данной функции y = f(x), если из отношения x = f(у) выразить y через x.
Чтобы для данной функции y = f(x) найти обратную, надо:
В соотношении y = f(x) заменить x на y, а y — на x: x = f(у) .
В полученном выражении x=f(у) выразить y через x.
Функции f(x) и g(x) — взаимно обратны. Рассмотрим это на примере
Примеры нахождения обратных функций:
size 12px 1 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 3 size 12px x size 12px minus size 12px 8
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 3 size 12px y size 12px minus size 12px 8 size 12px rightwards double arrow size 12px 3 size 12px y size 12px equals size 12px x size 12px plus size 12px 8 size 12px rightwards double arrow fraction numerator size 12px x size 12px plus size 12px 8 over denominator size 12px 3 end fraction
size 12px 2 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px x
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px y size 12px rightwards double arrow size 12px 5 size 12px y size 12px equals size 12px 11 size 12px minus size 12px x size 12px rightwards double arrow size 12px y size 12px equals fraction numerator size 12px 11 size 12px minus size 12px x over denominator size 12px 5 end fraction
Пусть во второй бригаде х рабочих, тогда в первой 2х рабочих. В первой бригаде число рабочих уменьшилось на 5, значит их стало 2х-5. А во второй число рабочих уменьшилось на 2, значит их стало х-2. Так как в первой бригаде рабочих стало на 7 больше, чем во второй, то составим и решим уравнение: 2х-5-(х-2)=7 2х-5-х+2=7 х-3=7 х=7+3 х=10 значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих. ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
Решение Половина пути для второго автомобиля 0,5. Пусть х км/ч – скорость первого автомобилиста, тогда (х + 54) км/ч - скорость второго автомобилиста Время второго автомобиля, за которое он весь путь 0,5 / 36 + 0,5/(x + 54) Время первого автомобиля равно времени второго автомобиля. 1/x = 0,5 / 36 + 0,5/(x + 54) 1/x - 0,5 / 36 - 0,5/(x + 54) = 0 36(x + 54) – 0,5x(x + 54) – 0,5*36x = 0 36x + 1944 – 0,5x² - 27x – 18x = 0 – 0,5x² - 9x + 1944 = 0 I : (-0.5) x² + 18x – 3888 = 0 D = 324 + 4*1*3888 = 15876 = 1262 X₁ = (- 18 – 126)/2 = - 72 не удовлетворяет условию задачи X₂ = (- 18 + 126)/2 = 54 54 км/ч - скорость первого автомобилиста ответ: 54 км/ч
формулой.
Функции подразделяются на следующие виды:
Линейная функция
Квадратичная функция
Кубическая функция
Тригонометрическая функция
Степенная функция
Показательная функция
Логарифмическая функция
Область определения функции D(у) - это множество всех допустимых значений аргумента x (независимой переменной x), при которых выражение, стоящее в правой части уравнения функции y = f(x) имеет смысл. Другими словами, это область допустимых значений выражения f(x).
Чтобы по графику функции y = f(x) найти ее область определения, нужно, двигаясь слева направо вдоль оси ОХ, записать все промежутки значений х, на которых существует график функции.
Множество значений фнкции Е(у) - это множество всех значений, которые может принимать зависимая переменная y.
Чтобы по графику функции y = f(x) найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.
Обратная функция — функция y=g(x), которая получается из данной функции y = f(x), если из отношения x = f(у) выразить y через x.
Чтобы для данной функции y = f(x) найти обратную, надо:
В соотношении y = f(x) заменить x на y, а y — на x: x = f(у) .
В полученном выражении x=f(у) выразить y через x.
Функции f(x) и g(x) — взаимно обратны. Рассмотрим это на примере
Примеры нахождения обратных функций:
size 12px 1 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 3 size 12px x size 12px minus size 12px 8
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 3 size 12px y size 12px minus size 12px 8 size 12px rightwards double arrow size 12px 3 size 12px y size 12px equals size 12px x size 12px plus size 12px 8 size 12px rightwards double arrow fraction numerator size 12px x size 12px plus size 12px 8 over denominator size 12px 3 end fraction
size 12px 2 size 12px right parenthesis size 12px space size 12px space size 12px y size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px x
size 12px space size 12px space size 12px space size 12px space size 12px space size 12px space size 12px x size 12px equals size 12px 11 size 12px minus size 12px 5 size 12px y size 12px rightwards double arrow size 12px 5 size 12px y size 12px equals size 12px 11 size 12px minus size 12px x size 12px rightwards double arrow size 12px y size 12px equals fraction numerator size 12px 11 size 12px minus size 12px x over denominator size 12px 5 end fraction