В решении.
Объяснение:
Дана функция y=x² + 6x -7. Постройте график этой функции.
График функции - парабола со смещённым центром, ветви параболы направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица
х -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
у 20 9 0 -7 -12 -15 -16 -15 -12 -7 0 9 20
а) запишите ось симметрии параболы;
y=x² + 6x -7
X = х₀ = -b/2a
x₀ = -6/2 = -3
X = -3.
б) в каких координатных четвертях расположен график?
График расположен во всех четырёх координатных четвертях.
1)arcsin 0 =0
2)arccos 1= 0 ;
3)arcsin√2/2 =π/4 ;
4)arccos 3 не существует угол косинус которой =3 ;
5)arcsin (-1) = -π/2 ;
6)arccos(-√3/2) = π -π/6 = 5π/6 ;
7)arctg 0 = 0 ;
8)arctg 1 =π/4 ;
9)arctg(-√3) = - π/3 ;
10)arcctg(-√3/3) = π -π/3= 2π/3 ;
11)arcsin(-1/2)+arccos 1 = -π/6 +0 = -π/6 ;
12) (arcsin -1)/2+ arccos 1 = -π/4+0= -π/4;
13)cos ( arccos 1) =1;
14)sin(arcsin√2/2) =√2/2 ;
15)arcsin (sin π/4) =arcsin(√2/2) =π/4 ;
16)arccos ( cos(-π/4))=arccos ( cos(π/4))=arccos (√2/2))=π/4 ;
17)cos (arcsin(-1/3))=cos(arccos(√8/3)= √8/3 =2√2/3 ;
18)tg(arccos(-1/4)) =tq(arctq(-√15) = - √15; 1+tq²α= 1/cos²α
19)sin(arcctg(-2)) =sin(arcsin(1/√5)=1/√5 ;
20) arcsin(cos π/9) =arcsin(sin(π/2 - π/9))=arcsin(sin7π/18) =7π/18 .
Подробнее - на -
Объяснение:
Объяснение:
Сумма корней приведенного квадратного трехчлена x2+px+q=0 равна его второму коэффициенту p с противоположным знаком, а произведение - свободному члену q.
х1+х2=-38
х1*х2=-15