1.
104° - тупой угол, только один в треугольнике.
180°-104°=76° - сумма двух других углов. они равны, т.к. треугольниу равнобедренный.
76°:2=38° - углы при основании равнобедренного треугольника.
2.
а) Сумма острых углов прямоугольного треугольника равна 90°.
90-30=60° - величина второго угла
Т.к. EF - биссектриса, то
60°:2=30° - ∠DEF
ED - основание ΔDEF, ∠DEF=∠EDF, EF=DF, следовательно, треугольник равнобедренный.
б) СF<DF
3.
х см - длина одной стороны
х+17 см - длина другой стороны.
Р=77 см
Примем большую сторону за основание.
х+х+х+17=77
3х=77-17
3х=60
х=20(см) - длина равных сторон
20+17=37(см) - длина основания
Теперь примем за основание меньшую сторону.
х+2*(х+17)=77
х+2х+34=77
3х=43
х≈14,3(см) - длина основания
14,3+17=31,3(см) - длина каждой из двух других сторон.
четвертое х€(2,3;∞)
Объяснение
Дано неравенство.Линейная функция (3-х) убывающая, а показательная (3^х) возрастающая для всех х€R.
При х=0 3>1-неравенство не выполняется, значит возможные решения лежат в интервалах 2 и 4.
При х=0.7 2.3>2.158 -неравенство не выполняется, значит х=0.7 и бесконечно близкие к нему значения не входят в область решений. Возьмем х=0.74, получим 2.26>2.255 -опять не выполняется, а при х=0.742 2.258<2.260 -выполняется. Значит нижней границей интервала значение х=0.7 не является, поскольку при значениях 0.7<х<0.74 (например) неравенство не выполняется.
На 4м интервале неравенство верное для всех х этого интервала, включая даже х=2.3