Cгруппируем слагаемые и используя формулу суммы кубов
а³+в³=(а+в)(а²-ав+в²), разложим на множители левую часть уравнения.
(x³+8)-(3x²+6x)=0; (х+2)(х²-2х+4)-3х*(х+2) =0;
(x+2)(x²-2x+4-3x)=0;
(x+2)(x²-5x+4)=0;
x+2=0; х=-2 или х²-5х+4=0 , ДЛЯ последнего УРАВНЕНИЯ
x₁·x₂=4
x₁+x₂=5, теперь просто подберите два числа, чтобы если их сложить, получить второй коэффициент, но с противоположным знаком, т.е. 5, а если перемножить, то получить свободный член с тем же знаком,т.е. 4, ясно, что это 1 и 4, т.к. 1+4=5; 1*4=4
ответ 1; 4; -2.
Чтобы получить 225, можно перемножить такие разные натуральные числа:
225*1, 75*3, 45*5, 25*9.
Произведение двух наименьших = 16
Чтобы получить 16, можно перемножить такие разные натуральные числа:
16*1, 8*2.
Т.к. есть 2 самых меньших и 2 самых больших, то меньшие не могут быть больше больших (очевидно же). Поэтому есть лишь вариант 25,9 и 8,2. В любых других случаях одно из больших чисел меньше одного из меньших чисел, чего не может быть.
Сумма всех чисел = 25+9+8+2 = 44