1) Пусть вся работа -- единица. Число дней, за которые вторая бригада выполнит всю работу ---х дней Число дней, за которые первая бригада выполнит всю работу ---(х -8) дней
Производительность двух бригад ВМЕСТЕ ---1/3 ( это как бы скорость выполнения всей работы. Часть всей работы за ОДИН день)
Производительность второй бригады - 1/х ( сколько сделает за ОДИН день) Производителность первой бригады -- 1 / (х-8) ( сколько сделает за ОДИН день)
Реши это уравнение. Получатся корни--- 2 дня и 12 дней. Но 2 дня быть не может ---не может же одна бригада выполнить задание быстрее, чем две бригады вместе. Значит оставляем корень ---12 дней
ответ: вторая бригада за 12 дней первая бригада за 4 дня ( 12 - 8)
Пусть скорость первого теплохода х, тогда скорость второго теплохода х + 10. Путь первого = 60, путь второго = 60 Время первого в пути = 60/х Время второго в пути = 60/(х + 10) Время второго в пути на 1 час меньше (т.к. он выехал на 1 час позже) Уравнение: 60/х-60(х+10)=1 Приводим к общему знаменателю 60(х+10) - 60х = х(х+10) 60х+600-60х=х^2+10x x^2+10x-600=0 решаем квадратное уравнение, получаем корни х_1 = 20 (скорость первого теплохода) х_2 = -30 (не удовлетворяет условию) скорость второго теплохода = 20+10 = 30 ответ: 30 км/ч
Объяснение: