Объяснение:
3x-9≠0
3(x-3)≠0
x≠3
Пусть х грамм масса одного вещества, а у грамм второго. Так как масса смеси, состоящей из двух вещество равна 900г, получим первое уравнение: х + у = 900. Тогда после того, как из этой смеси взяли первого вещества и 70% второго, в ней осталось первого вещества на 18г меньше, чем второго, получим следующее уравнение: (у - 70%у) - (х - 5/6х) = 18.
Необходимо найти остаток смеси х и остаток смеси у.
Найдём значение "х" и "у".
(у - 70%у) - (х - 5/6х) = 18 ;
100% - 70 % = 30 %;
Преобразуем уравнение:
30%у - 1/6х = 18;
3/10у - 1/6х = 18;
Найдём общий знаменатель:
3/10у * 6 - 1/6х * 10 = 18 * 60;
18/60у - 10/60х = 1080/60;
Сокращаем дроби:
18у - 10х = 1080;
10х = 18у - 1080;
Сокращаем на 10:
х = 1,8у - 108;
Теперь подставим значение х в первое уравнение, получим:
900 = х + у;
х = 900 - у;
х = 1,8у - 108;
900 - у = 1,8у - 108;
-2,8у = - 1008;
Упрощаем выражение:
-2,8у * (-1) = - 1008 * (-1);
2,8у = 1008;
у = 360 грамм;
х = 540 грамм;
Найдём остаток от "х" и "у".
у - 70%у = 0,3у = 0,3 * 360 = 108 грамм (столько осталось смеси у);
х - 5/6х = 1/6х = 1/6 * 540 = 90 грамм (столько осталось смеси х) ;
Проверяем:
После того, как из смесей выделили определенное количество, смесь у осталось на 18 грамм больше, чем смеси х.
Из этого следует:
(у - 70%у) - (х - 5/6х) = 18;
Подставляем значения:
108 - 90 = 18 ;
18 = 18 (Значения найдены верно);
ответ: Первого вещества осталось 90 грамм, а второго вещества осталось 108 грамм.
1. u = 7-2v
(7-2v)^2 + 4v - 13 =0
49 - 28v + 4v^2 + 4v - 13 = 0
4v^2 - 24v + 36 = 0 (:4)
v^2 - 6v + 9 = 0
(v - 3)^2 = 0
v =3
u = 7 - 2*3 = 7-6=1
ответ : v=3, u=1
2. z = -3+y^2
y^2 + 3*(y^2-3)-7=0
y^2 +3y^2 - 9-7 = 0
4y^2 - 16 = 0
4*(y^2-4)=0
y = 2 y=-2
z = 4-3=1 z = 4-3=0
ответ : y = 2, z=1; y=-2, z=1
3. m = 7+2n
(7+2n)^2 +5n + 14 = 0
49 + 28n + 4n^2 + 5n + 14 = 0
4n^2 + 33n + 65 = 0
D = 1089 - 1040 = 49
n1 = -33+7/8 = -26/8 = -3,25
n2= -33-7/8 = -40/8 = -5
m1 = 7 - 2 * 26/8 = 7-6,5 = 0,5
m2 = 7 - 2*5 = 7-10 = -3
ответ : n=-3,25,m=0,5 ; n=-5, m=-3
4. 2k = 7+2t^2
k = 7+2t^2/2
3*(7+2t^2/2) + 5t - 20 = 0
6t^2 + 10t - 19 = 0
D = 784
t1 = 1,5
t2 = -19/6
k1 = 5,75
k2 = 13 19/36
x ∈ \ {3}
Объяснение:
7/ 3x-9
3x-9
x ∈ \ {3}
x ∈ R
ответ: x ∈ \ {3}