Точки экстремума - это такие точки, в которых значение функция, скажем так, меняет свою скорость роста. То есть до неё функция либо возрастала, либо убывала, а после неё наоборот - начинает либо убывать, либо возрастать.
Для нахождения точки экстремума потребуется найти производную 1 порядка:
После этого мы приравниваем получившуюся функцию к нулю и решаем получившееся уравнение:
2x+6=0 => 2x=-6 => x=-3
но необходимо убедиться, что данная точка действительно является экстремумом, для этого мы смотрим как ведёт себя функция y' до и после точки x0=-3 (можно подставить любые значения <-3 а потом значение >-3, если получаются разные по знаку числа, к примеру отрицательное-положительное или положительное-отрицательное, то данная точка действительно является экстремумом функции y, а точнее в данном случае она является минимумом).
Ну а теперь осталось подставить значение x0=-3 в изначальную функцию y и найти y0
Ну и запишем ответ:
(-3;-17) - точка экстремума функции (а точнее - минимум)
Это все простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 Это 15 чисел, но каждое равно просто самому себе, потому что они простые и делятся только на 1 и на себя. 1 - это не простое число. Все составные числа больше, чем сумма их простых делителей. Например, делители 10 и 20: 2 и 5, 2+5 = 7. 34: 2 и 17, 2+17 = 19. Если считать 1 простым числом, тогда число только одно: 6 = 1+2+3 - это так называемое совершенное число. До 50 есть еще одно совершенное число 28 = 1+2+4+7+14, но у него не все делители - простые. ответ: если 1 - не простое число, то 15 чисел. Если 1 - простое число, то одно число 6.
График - парабола, ветви вниз, для построения требуются доп точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу: Х= 0 -2 У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!
(-3;-17) - точка экстремума функции (минимум)
Объяснение:
Точки экстремума - это такие точки, в которых значение функция, скажем так, меняет свою скорость роста. То есть до неё функция либо возрастала, либо убывала, а после неё наоборот - начинает либо убывать, либо возрастать.
Для нахождения точки экстремума потребуется найти производную 1 порядка:
После этого мы приравниваем получившуюся функцию к нулю и решаем получившееся уравнение:
2x+6=0 => 2x=-6 => x=-3
но необходимо убедиться, что данная точка действительно является экстремумом, для этого мы смотрим как ведёт себя функция y' до и после точки x0=-3 (можно подставить любые значения <-3 а потом значение >-3, если получаются разные по знаку числа, к примеру отрицательное-положительное или положительное-отрицательное, то данная точка действительно является экстремумом функции y, а точнее в данном случае она является минимумом).
Ну а теперь осталось подставить значение x0=-3 в изначальную функцию y и найти y0
Ну и запишем ответ:
(-3;-17) - точка экстремума функции (а точнее - минимум)