1) при а=0 и а≠-1 уравнение будет линейным и имеет один корень: -(a+1)x+a=0 x=a/(a+1) - корень уравнения 2) при а≠0 уравнение будет квадратным и имеет два корня, если его дискриминант больше нуля. D=(-(a+1))²-4*a*a=a²+2a+1-4a²=1+2a-3a² 1+2a-3a²>0 3a²-2a-1<0 D=(-2)²-4*3*(-1)=4+12=16=4² a(1)=(2+4)/(2*3)=6/6=1 a(2)=(2-4)/(2*3)=-2/6=-1/3 3(a-1)(a+ 1/3)<0 + - + _____________-1/3___________1_________
a∈(-1/3;1) и a≠0, т.е. при a∈(-1;0)U(0;1/3) уравнение имеет 2 корня
Решение: Зная формулу площади трапеции S=(a+b)/2*h, где а и в -основания трапеции, h-высота трапеции. В данном случае, чтобы найти площадь трапеции необходимо найти высоту трапеции h Если мы опустим перпендикуляр (т.е. высоту) на нижнее основание, мы получим прямоугольный треугольник с гипотенузой (это боковая сторона трапеции), равной 15 см и катет, равный другой боковой стороне 9 см. По теореме Пифагора находим второй катет прямоугольного треугольника (высоту h) Он равен: h=sqrt(15^2 -9^2)=sqrt144=12 Находим площадь трапеции: (9+18)/2*12=162 (см^2)
2дм= 20см
бумага ко сторонами 20*20
1) 20\5=4(см) -сторона прямоугольника
4*20 - пять прямоугольников
2) s=4*20=80(см2)
80см2=8дм2
ответ: площадь одной части прямоугольника равна 8 дм2