Даны точки A(-1;4), B(3;1), C(3,4). Найдите вектор c= 2 CA+3ABОбозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm
https://www.kontrolnaya-rabota.ru/s/equal-many/system-any/?ef-TOTAL_FORMS=52&ef-INITIAL_FORMS=2&ef-MIN_NUM_FORMS=0&ef-MAX_NUM_FORMS=1000&ef-0-s=11x%5E2-7x-10%3Dx%5E2%2B9x-2&ef-1-s=&ef-2-s=&ef-3-s=&ef-4-s=&ef-5-s=&ef-6-s=&ef-7-s=&ef-8-s=&ef-9-s=&ef-10-s=&ef-11-s=&ef-12-s=&ef-13-s=&ef-14-s=&ef-15-s=&ef-16-s=&ef-17-s=&ef-18-s=&ef-19-s=&ef-20-s=&ef-21-s=&ef-22-s=&ef-23-s=&ef-24-s=&ef-25-s=&ef-26-s=&ef-27-s=&ef-28-s=&ef-29-s=&ef-30-s=&ef-31-s=&ef-32-s=&ef-33-s=&ef-34-s=&ef-35-s=&ef-36-s=&ef-37-s=&ef-38-s=&ef-39-s=&ef-40-s=&ef-41-s=&ef-42-s=&ef-43-s=&ef-44-s=&ef-45-s=&ef-46-s=&ef-47-s=&ef-48-s=&ef-49-s=&ef-50-s=&ef-51-s=
Объяснение:ЭТО ССЫЛКА НА РЕШЕНИЕ
УДАЧИ
(-5a+10b)^2=25a+100b
(0,5x+1)^2=0,25x+1