Пусть х и у - два числа из условия. Тогда их разность x-y делится на 4,6 и 9, т.е. она делится на НОК(4,6,9)=36. Значит x-y=36k. Поэтому, если найти хотя бы одно число у, имеющее остатки 1,1 и 7 при делении на 4,6 и 9, то все остальные получатся из него по правилу x=y+36k, где k - любое целое число (понятно, что при каждом целом k, получаемое х будет иметь те же остатки при делении на 4,6,9). Понятно, что y должно быть вида y=1+12m, т.е. на интервале от 0 до 35 может быть только y=25.Значит, все нужные трехзначные имеют вид 25+36k при k=3,4,...,27. (т.е. от 133 до 997 с шагом 36) Значит их сумма (сумма арифметической прогрессии) равна (133+997)*25/2=14125.
3х=5-2у
х=5-2у
3
2) {5x+y=2
{x-2y=71
x=71+2y
5(71+2y)+y=2
355+10y+y=2
11y=2-355
11y=-353
y=-353
11
y= -32 ¹/₁₁
x=71+2*(-353) =71*11-2*353 =781- 706 = 75 = 6 ⁹/₁₁
11 11 11 11
ответ: х=6 ⁹/₁₁
у=-32 ¹/₁₁
3) у=-5 3х-2у=22
3х-2*(-5)=22
3х+10=22
3х=22-10
3х=12
х=4
ответ: х=4
5) х - количество 5 рублевых монет
х+11 - количество 2 рублевых монет
2(х+11)+5х=50
2х+22+5х=50
7х=50-22
7х=28
х=4 - 5 рублевые монеты
4+11=15 - 2 рублевые монеты
ответ: 15 штук.
6) M(-4; -21)
N(3; 7)
{-21=-4k+b
{7=3k+b
{-21+4k=b
{7-3k=b
-21+4k=7-3k
4k+3k=7+21
7k=28
k=4
7-3*4=b
7-12=b
b=-5
y=4x-5 - уравнение прямой.