1. записываем пример.
2. раскрываем формулу разности квадратов (x^2-y^2) и закрываем формулу квадрата разности (x^2-2xy+y^2) и одновременно с этим проводим другие действия. при раскрытии формулы разности квадратов получается (x-y)(x+y). при закрытии формулы квадрата разности получается (x-y)^2. значит, это можно раскрыть как выражение (x-y), возведенное в квадрат, то есть, умножить это выражение на такое же. получается (x-y)(x-y). проводим остальные действия: выносим общие множители выражений за скобки и превращаем вторую дробь в обратную. в итоге получаются сократимые выражения, состоящие из множителей. (x+2y) сокращается в числителе первой дроби и в знаменателе второй. (x-y) сокращается в знаменателе первой дроби и в числителе второй. далее просто умножаем оставшиеся выражения на множители, которые выносили ранее. ответ:
вывод. применение формул сокращенного умножения - их нужно закрывать или раскрывать в зависимости от того, что требуется в примере.
2) 2+2x-2x-2x^ +2-4x-x+2x^ = 4-5x
3) (x^-5x-2x+10) (x^-4x-3x+12) = x^-5x-2x+10-x^+4x+3x-12= -2
Объяснение: ^ этот знак означает во втором степене. 1 не сделала потому что не уверенна какой там степень. Напиши в комментариях какой, и я напишу ответ на 1