М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Foreveralone321
Foreveralone321
20.10.2021 18:46 •  Алгебра

Решения данного квадратного неравенства x2−6x<−8 — это


Решения данного квадратного неравенства x2−6x<−8 — это

👇
Ответ:
diatel83
diatel83
20.10.2021

Вот надеюсь оценишь , вждвдадалааллалплплплалплплала


Решения данного квадратного неравенства x2−6x<−8 — это
4,6(97 оценок)
Открыть все ответы
Ответ:
Cfhbcbudh
Cfhbcbudh
20.10.2021
1 x 2 17 x 2 ± 4x + 3 33 x 2 ± 7x + 12 2 x 2 – 1 18 x 2 ± 4x + 4 34 x 2 ± 8x 3 x 2 – 4 19 x 2 ± 4x – 5 35 x 2 ± 8x + 7 4 x 2 –9 20 x 2 ± 4x – 12 36 x 2 ± 8x – 9 5 x 2 ± x 21 x 2 ± 5x 37 x 2 ± 8x + 12 6 x 2 ± x – 2 22 x 2 ± 5x + 4 38 x 2 ± 9x 7 x 2 ± x – 6 23 x 2 ± 5x ± 6 39 x 2 ± 9x + 8 8 x 2 ± x – 12 24 x 2 ± 6x 40 x 2 ± 9x – 10 9 x 2 ± 2x 25 x 2 ± 6x + 5 41 x 2 ± 10x 10 x 2 ± 2x + 1 26 x 2 ± 6x – 7 42 x 2 ± 10x + 9 11 x 2 ± 2x – 3 27 x 2 ± 6x + 8 43 x 2 ± 10x – 11 12 x 2 ± 2x – 8 28 x 2 ± 6x + 9 44 x 2 ± 11x 13 x 2 ± 3x 29 x 2 ± 7x 45 x 2 ± 11x + 10 14 x 2 ± 3x – 4 30 x 2 ± 7x + 6 46 x 2 ± 11x – 12 15 x 2 ± 3x – 10 31 x 2 ± 7x – 8 47 x 2 ± 12x 16 x 2 ± 4x 32 x 2 ± 7x + 10 48 x 2 ± 12x + 11 
4,4(43 оценок)
Ответ:
Cat514
Cat514
20.10.2021

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,6(25 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ