а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
итак
y=(x+2)/(x^2-9)
1) ООФ
x^2-9=\=0 => x=\=+-3
других ограничений нет, значит, ООФ (-oo;-3) U (-3;3) U (3;+oo)
2) Область значений
(-oo;+oo)
3) четность
f(x)=(x+2)/(x^2-9)
f(-x)=(-x+2)/(x^2-9)
вывод: ни четная, ни нечетная
4) Прерывность.
В принципе, мы уже нашли это в ООФ, но все же
Функция прерывается в точках х=-3, х=3
5) Нули функции
(x+2)/(x^2-9)=0
x=-2 - нуль функции
6) Асимптоты
Вертикальные асимпоты в точках х=-3, х=3
Горизонтальных асимптот нет, ибо функция имеет значения на всей числовой прямой
7) Точки макс/мин, промежутки возрастания
f'(x)=-(x^2+4x+9)/(x^2-9)^2
критические точки
x^2+4x+9=0
корней нет
значит, во всех точках функция убывает, но не забываем о прерываниях
функция убывает на (-oo;-3) U (-3;3) U (3;+oo)