Решение системы уравнений а=12,5
v=3,75
Объяснение:
Решить систему уравнений алгебраического сложения.
a−2v=5
5a−6v=40
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -5:
-5а+10v= -25
5a−6v=40
Складываем уравнения:
-5а+5а+10v-6v= -25+40
4v=15
v=15/4
v=3,75
Теперь значение v подставляем в любое из двух уравнений системы и вычисляем а:
5a−6v=40
5а=40+6*3,75
5а=62,5
а=62,5/5
а=12,5
Решение системы уравнений а=12,5
v=3,75
ответ: 60 см
Объяснение:
Пусть гипотенуза прямоугольного треугольника х см, ( х>16) тогда согласно условия задачи, один из катетов равен (х-16) см, а другой катет равен (х-2) см.
По Теореме Пифагора следует:
х²=(х-16)²+(х-2)²
х²=х²-32х+256+х²-4х+4
х²-х²+32х-256-х²+4х-4=0
-х²+36х-260=0 (* на (-1)
х²-36х+260=0
х1,2=(36+-D)/2
D=√(36²-4*1*260)=√(1296-1040)=√256=16
х1,2=(36±16)/2
х1=(36+16)/2
х1=26
х2=(36-16)/2=10 - не подходит, так как х>16
Тогда катеты равны 26-16=10 26-2=24
Периметр это есть сумма всех трех сторон:
Р=26+10+24=60 см
ответ : 60 см
(0,631+0,2)•(0,631-0,2)=0,631•2
0,831•0,431=1,262