берем производную: f(x)' =2(3x^2)-6=6x^2-6 ищем экстремиумы:
6x^2-6=0; x^2=1; x1=1; х2=-1 у функции 2 экстремиума: (1;0) и (-1;8) определяем методом интервалов возрастание/убывание:
y1=0, y2=8;
возрастает: х=(-беск;-1] и [1;+беск)
убывает: х= (-1;1]
определить четность/нечетность: f(-x)=2(-x)^3-6(-x)+4=-2x^3+6х+4=-(2x^3-6х-4)
- функция не является ни четной ни
нечетной;
ищем точки перегиба:
берем 2 производную:
f(x)"=6(2x)=12x
12х=0; x=0;
y=4; (0;4)
методом интервалов находим выпуклость
вогнутсть:
выпукла: (-беск;0]
вогнута: [О;+беск)
собираем точки:
(1;0), (-1;8), (0,4)
и по ним строим график:
4sqrt(x)(2-x)
f'=4(2-x)1/2sqrt(x)-4sqrt(x)=2(2-x)/sqrt(x)-4sqrt(x)
f'=0 4-6x=0 x=2/3
это точка максимума
x>=0 [0;2/3[ - монотонно возрастает
]2/3;бесконечность[ убывает