Нам нужно найти корни квадратного уравнения 9x2 - 7x - 2 = 0. И начнем мы традиционно с вычисления дискриминанта уравнения.
Для этого мы вспомним формулу:
D = b2 - 4ac, а так же выпишем коэффициенты, которые мы должны подставить в формулу:
a = 9; b = -7; c = -2.
Итак, подставляем значения и вычисляем:
D = (-7)2 - 4 * 9 * (-2) = 49 + 72 = 121;
Мы получили положительный дискриминант и можем говорить о том, что уравнение имеет два корня:
x1 = (7 + √121)/2 * 9 = (7 + 11)/18 = 18/18 = 1;
x2 = (7 - √121)/2 * 9 = (7 - 11)/18 = -4/18 = -2/9.
y - f(x₁) =f ' (x₁)(x -x₁) ;
f ' (x) =( -x² -7x +8) ' = (-x²) ' - (7x) ' +8 '
= -(x²) ' - 7(x) ' +0 = -2x - 7 ;
f ' (x₁) = -2x₁ -7 ;
f ' (x₁) = -(2x₁ +7);
k₁ = f ' (x₁) = - (2x₁ +7);
Уравнение касательной (прямая линия) ищем в виде
y =kx +b ;
проходит через точку B(1;1) , поэтому :
1 =k*1 + b;
y -1 = k(x-1);
k = k₁ ;
y - 1 = -(2x₁+ )(x -1) ;
y = 1 - (2x₁+ 7)(x -1) ;
{ y = - x²₁ -7x₁ + 8 ; y = 1 - (2x₁+7)(x₁ -1) . x₁ =0 ; x ₁ =2 ;
a) y =1 -(2*0 +7)(x -1) ;
y = - 7x+ 8;
b) y = 1 - (2*2+7)(x-1);
y= - 11x +12 .