Обратим внимание, что выражения в скобках похожи. Обозначим выражение во второй скобке за t. Тогда получим t=x+1/x. Но вторую скобку заменить также "в лоб" мы не можем. Пойдём на небольшую хитрость. Возведём наше t в квадрат. Получим: t^2=x^2+2x*1/x+1/x^2=x^2+2+1/x^2. Получившееся значение уж больно похоже на то, что нам нужно. Всю картину портит только двойка справа. Но поскольку двойка балом не правит и никак не зависит от х, то просто перенесём её влево к нашему t^2. Тогда что мы имеем? А имеем мы вторую замену, поскольку только что выразили нашу первую скобку: x^2+1/x^2=t^2-2. Теперь собираем урожай и производим замену. Получаем: (t^2-2)+t=0 --> t^2+t-2=0. А это есть ни что иное как квадратное уравнение. Находим дискриминант: D=1-4*(-2)=1+8=9. И корни: t1= (-1+3)/2=1; t2=(-1-3)/2=-2 Делаем обратную замену. Вспомним, что наше t=x+1/x. Сначала подставим t1: x+1/x=1 | домножим на х x^2+1=x --> x^2-x+1=0. Получаем ещё одно квадратное уравнение, но уже относительно х. Находим его дискриминант: D=1-4<0. Дискриминант меньше нуля. Следовательно, корней нет. Теперь подставим t2: x+1/x=-2 |домножим на х x^2+1=-2x --> x^2+2x+1=0. Решим квадратное уравнение. Посчитаем дискриминант: D=4-4=0. Найдём корень уравнения. x=(-2+/-0)/2=-1 Теперь смотрим на наши квадратные уравнения относительно х (первое с t не трогаем). В первом квадратном уравнении у нас корней не было, во втором всего один. Он и является ответом ответ: х=-1
1) 25X^2 - 75X^2 - 17X + 6 = 0
25*(5)^2 - 75*25 - 85 + 6 = 625 - 1875 - 85 + 6 = 631 - 1960 = - 1329
ОТВЕТ: число 5 НЕ ЯВЛЯЕТСЯ КОРНЕМ ДАННОГО УРАВНЕНИЯ
2) 3*(2X-7) = 6X+1
6X - 21 = 6X + 1
6X - 6X = 22
0X = 22
ОТВЕТ: КОРНЕЙ НЕТ
4) (X-1)*(X+1) = 0
X1 = 1 X2 = - 1
(X+1)^2 = 2X+2
X^2 + 2X + 1 = 2X + 2
X^2 + 2X + 1 - 2X - 2 = 0
X^2 - 1 = 0
X^2 = 1 ---> X1 = V 1 = 1 (один корень)
ОТВЕТ: НЕ ЯВЛЯЕТСЯ
|X| - 1 = 0
|X| = 1
ОТВЕТ: ЯВЛЯЕТСЯ
X^2 = 1
ОТВЕТ: ЯВЛЯЕТСЯ
(X-1) = (X+1)
Корней нет : НЕ ЯВЛЯЕТСЯ
5) 2X+3A = 5X - 6B
5X - 2X = 3A + 6B
3X = 3*(A + 2B)
X = A + 2B
3) - 24X = - 5
AX = B
48X = 10
72X = 15