Найдите функции, графики которых параллельны друг другу, и объясните ответ 1)у=0.25х-2 и у=1/4х+8 2)у=3/10х-2 и у=0.3х-2 3)у=3х+4 и у=2/3х-1 4)у=15х-11 и у=3/8х+15.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
И так. С начало нужно решить уравнение cosx=1/2. X = Pi/3 + 2Pi*k ;(2Pi)/3 +2Pi*k, Где k целое число. Теперь нам нужно сократить основное выражение. Тангенс мы пока трогать не будем, а вот дробь можно сократить. Так как 1 = cos^2x + sin^2x, то (cos^2x -1) = cos^2x - cos^2x - sin^2x, тут косинус сокращается и остается только -sin^2x. Теперь наша дробь получается вот такой -sin^2x / 3sin^2x, синусы сокращаются о выходит -1/3. Теперь вспоминаем про тангенс, который в начале и просто умножаем Tg^2x на -1/3 И получается -Tg^2x/3. Теперь вместо X подставляем два значения, которые мы нашли в самом начале (Pi/3 и (2Pi)/3) и решаем. Выходит, что -Tg^2(Pi/3)/3 = -1 И -Tg^2((2Pi)/3)/3 = Тоже -1. В итоге ответ -1
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.