б) ху + х = 2у +6 х-6=2у-ху х-6=у(2-х) у=х-6/2-х дальше незнаю как, может график построить
2. а:7=х (ост4) а:3=у (ост1)
а:21=в (ост ?) => чтобы а разделить на 21 должна быть а > 21 по первому примеру а:7=х (ост4) можно предположить, что 21+4=25
проверим на втором примере а:3=у (ост1) 25:3=8 (ост1) сходится
значит решим третий пример а:21=в (ост ?) 25:21=1 (ост 4)
это мое логическое решение, имею ввиду, что это решение не является стандартным решением
еще предположение такое: а:7=х (ост4) а:3=у (ост1) а:21=в (ост ?)
если посмотреть внимательно можно увидеть, что 7*3=21, значит 4*1=4. как-то наверное пропорцию можно составить, но непойму как. однако остаток 4 сошелся, и в 1 решении и во 2.
Пусть x деталей/ч -- проивзодительность певой бригады, тогда (x-4) -- производительность второй бригады. 144/(x-4) - 120/x = 3; 48/(x-4) - 40/x = 1; 48x - 40(x-4) = x(x-4); x^2 - 12x - 160 = 0; x = 6 + sqrt (36+160) = 6 + 14 = 20 (деталей/ч) -- производительность первой бригады; (отрицательный корень отбрасываем), тогда производительность второй бригады равна 20-4 = 16 (деталей/ч). (Проверяем: первая бригада работала 120/20=6 часов, вторая -- 144/16=9 часов, т. е. на три часа дольше первой -- всё сходится). ОТВЕТ: производительность первой бригады 20 деталей/ч; второй бригады -- 16 деталей/ч.
-11
Объяснение:
х^2-8х+5=х^2-2×4×х+16-11=
=(х-4)^2-11
(х-4)^2 - неотрицательно, значит минимальное возможное значение выражения х^2-8х+5 равно -11