разложим на множители: теперь уравнение примет вид: одз: умножаем все уравнение на (3x-1)(2x+1) решаем это уравнение 4 степени: если сумма коэффициентов уравнения равна 0, то x=1 является корнем этого уравнения 6-11+3+3-1=12-12=0 x1=1 тогда уравнение можно представить как: тогда получим, что: тогда можно составить систему: a-6=-11 b-a=3 c-b=3 c=1 решаем: a=6-11=-5 c=1 b=a+3=-5+3=-2 получим: теперь находим корни 6-5-2+1=7-7=0, значит x=1 - корень этого уравнения, и его можно представить как: тогда получим, что: можно составить систему: a-6=-5 b-a=-2 -b=1 решаем: b=-1 a=6-5=1 получим: в итоге: корни этого квадратного трехчлена не подходят по одз, поэтому уравнение имеет только 1 корень: x=1 ответ: x=1
D(y) = (-∞; 1) U (1; +∞)
y' = [4/(x - 1) + x]' = -4/(x - 1)² + 1
y' ≥ 0
-4/(x - 1)² + 1 ≥ 0
-4/(x - 1)² ≥ -1
4/(x - 1)² ≤ 1, по свойству пропорции
(x - 1)² ≤ 4
|x - 1| ≤ 2
-2 ≤ x - 1 ≤ 2
-1 ≤ x ≤ 3
Значит, функция возрастает на [-1; 1) U (1; 3] и убывает на (-∞; -1],
[3; +∞).
Значит, xmax = -1.
Точки минимума и асимптота функции не попадают в заданный промежуток.
Найдём значения функции в крайних точках:
f(-2) = 4/(-2 - 1) - 2 = -4/3 - 2 = -10/3
f(0) = 4/(0 - 1) + 0 = -4
-4 < -10/3
ответ: -4.