12p^4 - 11p^3 + 54p^2 + 10p - 25.
Объяснение:
1. Выполним умножение: каждое слагаемое первого трехчлена поочередно умножим на каждое слагаемое второго трехчлена, результаты сложим, учитывая знаки.
(p^2 − p + 5)(12p^2 + p − 5) = p^2 × 12p^2 + p^2 × p - p^2 × 5 - p × 12p^2 - p × p + p × 5 + 5 × 12p^2 + 5 × p - 5 × 5 = 12p^4 + p^3 - 5p^2 - 12p^3 - p^2 +5p + 60p^2 + 5p - 25 = 12p^4 - 11p^3 + 54p^2 + 10p - 25.
2. Приведем подобные слагаемые, поочередно сложив коэффициенты переменных одной степени.
12p^4 - 11p^3 + 54p^2 + 10p-25
Пусть событие - "произошло попадание", а событие - "для стрельбы была выбрана i-ая винтовка".
Найдем вероятности событий .
По условию, выбор винтовки зависит от результата подбрасывания монеты. Пусть, на монете выпал герб, причем мы знаем, что герб выпадает с вероятностью . В этом случае, винтовка выбирается из трех (с нечетными номерами - 1, 3 и 5). Выбор винтовок равновероятный, поэтому вероятность выбрать каждую из этих винтовок после подбрасывания монеты равна . Итого, для выбора каждой из этих винтовок должны произойти два события: должен выпасть герб и винтовку должны выбрать из списка нечетных винтовок. Значит:
Если на монете не выпал герб, что также происходит с вероятностью , то винтовка будет выбираться из двух (с четными номерами - 2 или 4). Выбор винтовок по-прежнему равновероятный, поэтому вероятность выбрать каждую из этих винтовок после подбрасывания монеты равна . В результате, для выбора каждой из этих винтовок должны произойти два события: не должен выпасть герб и винтовку должны выбрать из списка четных винтовок. Значит:
Распишем, с какой вероятностью стрелок попадает в мишень. Эта вероятностью складывается из суммы попарных произведений вероятности выбора очередной винтовки и вероятности попадания из этой винтовки:
Вероятности попадания из винтовок даны по условию:
Находим вероятности попадания в мишень:
Для ответа на второй вопрос воспользуемся формулой Байеса:
Все величины известны. Поэтому, подставляем: