Задание 1. Правописание наречий объяснить графически (обозначьте
суффиксы и приставки наречий). Объяснить правописание наречия.
Определить его разряд. Налев..., Когда (нибудь), Свеж..., Сгоряч...
Задание 2. Образуйте степени сравнения наречий. Наречие сравнительная. Составная сравнительная, превосходная степень: холодно,
мало, полезно.
Задание 3. Вставьте подходящие по смыслу наречия или прилагательные в
сравнительной степени. Сегодня день.. Девочка оделась.. Вторая работа
написана..
Объяснение:
Задание 1. Правописание наречий объяснить графически (обозначьте
суффиксы и приставки наречий). Объяснить правописание наречия.
Определить его разряд. Налев..., Когда (нибудь), Свеж..., Сгоряч...
Задание 2. Образуйте степени сравнения наречий. Наречие сравнительная. Составная сравнительная, превосходная степень: холодно,
мало, полезно.
Задание 3. Вставьте подходящие по смыслу наречия или прилагательные в
сравнительной степени. Сегодня день.. Девочка оделась.. Вторая работа
написана..
Відповідь:
Сразу разбираемся в обозначениях и терминах:
– значок интеграла.
– подынтегральная функция (пишется с буквой «ы»).
– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.
– подынтегральное выражение или «начинка» интеграла.
– первообразная функция.
– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .
Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Еще раз посмотрим на запись:
Посмотрим в таблицу интегралов.
Что происходит? Левые части у нас превращаются в другие функции: .
У наше определение.
Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .
Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.
Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:
Пояснення:
а) 81x^2+18x+1=0
D=18^2-4*81*1=324-324=0
x=(-18)/162=-9/81=-1/9
81x^2+18x+1=81(x+1/9)(х+1/9)
б) 16b^2-24b+9=0
D=(-24)^2-4*16*9=576-576=0
x=24/32=0.5
16b^2-24b+9= 16*(x-0.5)(x-0.5)
в) 6x^2-x-1=0
D=(-1)^2-4*6*(-1)=1+24=25
x1=(1+5)/12=0.5 x2=(1-5)/12= -1/3
6x^2-x-1=6(x-0.5)(x+1/3)
г) 3a^2-13a-10=0
D=(-13)^2-4*3*(-10)=169+120=289
x1=(13+17)/6=5 x2=(13-17)/6=-2/3
3a^2-13a-10=3(x-5)(x+2/3)