{
x−y=1
x+y=9
⇔{
y=x−1
y=9−x
Графики линейных функций y = 9–x и y = x–1 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.
Для функции y = 9–x (зелёные точки):
1) x=0 ⇒ y= 9–0= 9 ⇒ (0; 9)
2) y=0 ⇒ 0= 9–x ⇒ x= 9 ⇒ (9; 0).
Для функции y = x–1 (синие точки):
1) x=0 ⇒ y= 0–1= –1 ⇒ (0; –1)
2) y=0 ⇒ 0= x–1 ⇒ x= 1 ⇒ (1; 0).
Построим графики функций в одной системе координат (см. рисунок 1). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):
(5; 4).
\tt \displaystyle \left \{ {{3 \cdot x+y=1} \atop {x+y=5}} \right. \Leftrightarrow \left \{ {{y=1-3 \cdot x} \atop {y=5-x}} \right.{
x+y=5
3⋅x+y=1
⇔{
y=5−x
y=1−3⋅x
Графики линейных функций y = 1–3•x и y = 5–x - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.
Для функции y = 1–3•x (синие точки и синие штрихи):
1) x=0 ⇒ y= 1–3•0 = 1 ⇒ (0; 1)
2) x=1 ⇒ y= 1–3•1 = –2 ⇒ (1; –2).
Для функции y = 5–x (зелёные точки):
1) x=0 ⇒ y= 5–0 = 5 ⇒ (0; 5)
2) y=0 ⇒ 0= 5–x ⇒ x= 5 ⇒ (5; 0).
Построим графики функций в одной системе координат (см. рисунок 2). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):
(–2; 7).
\tt \displaystyle \left \{ {{y-6 \cdot x=-25} \atop {y-x=-5}} \right. \Leftrightarrow \left \{ {{y=6 \cdot x-25} \atop {y=x-5}} \right.{
y−x=−5
y−6⋅x=−25
⇔{
y=x−5
y=6⋅x−25
Графики линейных функций y = 6•x–25 и y = x–5 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.
Для функции y = 6•x–25 (синие точки и синие штрихи):
1) x=2 ⇒ y= 6•2–25 = –13 ⇒ (2; –13)
2) x=3 ⇒ y= 6•3–25 = –7 ⇒ (3; –7).
Для функции y = x–5 (зелёные точки):
1) x=0 ⇒ y= 0–5 = –5 ⇒ (0; –5)
2) y=0 ⇒ 0= x–5 ⇒ x= 5 ⇒ (5; 0).
Построим графики функций в одной системе координат (см. рисунок 3). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):
(4; –1).
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1